Online Journal of Animal and Feed Research

An International Peer-Reviewed Journal which Publishes in Electronic Format

Volume 4, Issue 5, September 2014
Online Journal of Animal and Feed Research (OJAFR)

ISSN: 2228-7701
Frequency: Bi-monthly
Current Volume: 4 (2014)
Current Issue: 4 (25 July)
Next Issue: 25 Sep 2014

OJAFR is an open access peer-reviewed journal. All accepted articles are published bi-monthly in full text on the Internet. OJAFR publishes the results of original scientific researches, reviews and short communications, in all fields of animal and feed. It aims to improve livestock performance and better utilization of feed resources on animal's productions and related areas.

Field of researches:

Plagiarism checking now active
Please be aware that Scienceline Press now checks ALL submitted manuscripts for plagiarism. We use the Docoloc leading edge CrossCheck system.

Indexed in PubMed, CABI, CAS, AGRICOLA, DOAJ, Ulrich's ™, GALE, TIB, SFU see more...

Editorial team of OJAFR:

Administrator
Saeid Chekani Azar,
Department of Animal Science, Faculty. Veterinary Medicine, Atatürk University, Erzurum, TURKEY
(PhD, Physiology – Animal Behavior)

Managing Editor
Alireza Lotfi,
Department of Animal Science, Islamic Azad University, Shabestar, IRAN
(PhD, Physiology – Non Ruminants)

Editor-in-Chief
Habib Aghdam Shahryar,
Department of Animal Science, Islamic Azad University, Shabestar, IRAN
(Assistant Prof., Nutrition - Non Ruminants)

Executive Editor
Mehrdad Ehsani-Zad,
MA in TEFL, Islamic Azad University, Takestan Branch, Takestan, IRAN

Editorial Board (A-Z)
Section Editors

Addis Getu,
Lecturer in University of Gondar, P.O.BOX: 196, Gondar, ETHIOPIA
Ph.D., Assistant Prof., Animal Genetics and Breeding

Ahmad Yildiz,
Ph.D., Associate Prof., Nutrition - Ruminants
Akbar Taghizadeh
Dep. Anim. Sci., Tabriz University, Tabriz, IRAN
Ph.D. Associate Prof., Nutrition - Ruminants

Ali Halajian
Dep. Biodiversity, School of Molecular and Life Sciences, Faculty of Science and Agriculture, University of Limpopo, SOUTH AFRICA
Ph.D. D.V.M., Professor of Parasitology

Ali Nobakhht
Ph.D., Assistant Prof., Nutrition - Non-Ruminants

Alireza Ahmadzadeh
Ph.D., Assistant Prof., Biometry - Plant Breeding (Biotechnology

Alireza Lotfi,
Physiology, Food Science and Technology

Ana Isabel Roca Fernandez
Animal Production Department, Agrarian Research Centre of Mabegondo, PO Box 10, 15080 La Coruña, SPAIN
Ph.D., Prof., Dairy Science, Plant-Soil Science

Ekrem LAÇIN,
Ph.D., Associate Prof., Nutrition - Non-Ruminants

Fikret Çelebi
Ph.D., Prof., Physiology and Functional Biology of Systems

Hamid Mohammadzadeh
Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, IRAN
Ph.D., Assistant Prof., Nutrition - Ruminants, Silage and silage additives, Carbohydrate fermentation, Microbial diversity in rumen and feces, Non-forage fiber sources, By-products

Manish Kumar
Society of Education (SOE), INDIA
Prof. Dr. Pharmacology, Ethnomedicine

Hamid Reza Gheisari
Academic staff, Dep. Food Hygiene, School of Vet. Med., Shiraz Univ., Shiraz, IRAN
Ph.D., Assistant Prof., Biostatistics, Vet. Epidemiology, Food microbiology, Food chemistry and Meat Science. Dairy Science

Hazim Jabbar Al-Daraji,
University of Baghdad, College of Agriculture, Abu-Ghraib, Baghdad, IRAQ
Ph.D, Professor of Avian Reproduction and Physiology

John Cassius Moreki
Ph.D., Department of Animal Science and Production, Botswana College of Agriculture, Gaborone, BOTSWANA
Nutrition - Non-Ruminants, Breeders, Nutritive value and utilization of feeds, Livestock management

Mohammed Youssuf Kurtu
Animal Sciences Department, Haramaya University, Dire-Dawa, ETHIOPIA
Associate Prof., Animal Science, Nutrition

Khalid Mohammed Elamin Osman
Department of Animal breeding, Faculty of Animal Production, University of Gezir, Sudan
Ph.D., Assistant Prof., Non-Ruminants, Genetics and Animal breeding, Mathematical models, analytical and experimental methods of feed evaluation, Animal-feed interactions.

Naser Maheri Sis
Ph.D., Assistant Prof., Nutrition - Ruminants, Nutritive Value, Utilization of Feeds

Nilüfer SABUNCUOĞLU ÇOBAN,
Ph.D., Associate Prof., Animal Hygiene, Physiology, Animal Welfare

Osman Erganış
Ph.D., Prof., Food Safety, Physiology and Functional Biology of Systems

Ömer ÇOBAN,
Ph.D., Associate Prof., Nutrition - Ruminants

Paola Roncada
Veterinary Pharmacology and Toxicology, Facult. of Veterinary Medicine, University of Bologna, ITALY
Ph.D., Associate Prof., Pharmacokinetics, Residues of mycotoxins in feed, in food and in food producing species, Residue depletion studies

Saeed Chekani Azar
Dep. Anim. Sci., Islamic Azad University (I.A.U.), Shabestar, IRAN
Product Quality, Physiology, Human Health and Well-Being.

Shahin Eghbali-Saeid,
Ph.D., Associate Prof., Animal Genetics and Breeding

Tohid Vahdatpour
Ph.D., Assistant Prof., Physiology and Functional Biology of Systems

Vassilis Papatsiros
Dep. Medicine (Porcine Medicine), Faculty of Veterinary Medicine, University of Thessaly, Trikalon str 224, GR 43100, GREECE
Dietary input, Animal and Feed interactions

Valiollah Palangi,
Dep. Anim. Sci., Islamic Azad University (I.A.U.), Maragheh, IRAN
Nutrition-Ruminants

Wafaa Abd El-Ghany Abd El-Ghany,
Poultry and Rabbit Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, EGYPT
PhD, Associate Prof., Poultry and Rabbit Diseases

Zohreh Yousefi
Faculty of Biological Sciences, Shahid Beheshti University, Tehran, IRAN
Biology, Botanical Biosystematic (MSc), Plant Genetic (PhD student)
Wesley Lyverton Correia Ribeiro
College of Veterinary, Medicine, State University of Ceará, Av. Paranjana, 1700, Fortaleza, BRAZIL
MSc, DVM, Animal Health, Veterinary Parasitology, and Public Health, Animal welfare and Behavior

Deputy Section Editors:

Arda Yildirim
Department of Animal Science, Faculty of Agriculture, Gaziosmanpasa University, 60240 Tokat, TURKEY
Ph.D., Assistant Prof., Animal Science, Nutrition-non Ruminants, Breeding, Nutritive Value, Utilization of Feeds

Ümit Acar
Department of Aquaculture, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, TURKEY
Research Assistant and PhD student, Aquaculture, Fish nutrition, Alternative Feed ingredients

Behzad Shokati
Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Maragheh, Maragheh, IRAN
Agriculture: Environment, Nutritive value and utilization of feeds

FARHAD AHMADI
MSc., Researcher, Nutrition-non Ruminants, Applied particles of Nanosilver in poultry production, Additives, Immune system, Nutrient digestibility

Ferdaus Mohd. Altaf Hossain
Sylhet Agricultural University, Bangladesh; not shah Jalal University of Science & Technology, BANGLADESH
D.V.M, Microbiology, Immunology, Poultry Science, and Public Health

Ibrahim Bushara Mohammed Ibrahim
Animal Production Department, Faculty of Agricultural Sciences, Dalanj University, SUDAN
Animal Science, Nutrition-non Ruminants, Nutritive Value, Utilization of Feeds

Mutaz Saeed Babiker Mahmoud
Non Ruminants

Murtada Babiker Mohamed Elemam
Department of Animal Production, Faculty of Agriculture and Natural Resources, University of Kassala, P.O. Box 12, New Halfa, SUDAN.
Ph.D., Nutrition - Ruminants (Ruminant Nutrition, Microbes and Physiology)

Navid Hosseini Mansoub,
DVM, Pathology

Raga Mohamed Elzaki Ali
Dep. Rural Economics and Development, Faculty of Animal production- Managil, University of Gezira, SUDAN.
Ph.D., Assistant Prof., Animal-feed interactions, Nutritive value and utilization of feeds

Peter Asiedu
Council for Scientific and Industrial Research (CSIR), Animal Research Institute (ARI), Box AH 20, Achimota-Accra, GHANA
M.Phil., Animal Nutrition and Management

Shahin Hassanpour
Physiology and Functional Biology of Systems

Terry Ansah
Ph.D. student, University for Development Studies-Ghana and Harper Adams University College, UNITED KINGDOME
Nutrition - Ruminants

Yadollah Bahrami,
Ph.D. Student, Nutrition - Non-Ruminants

Tarlan Farahvash
Tarbiat Modares University, Tehran, IRAN
Ph.D. Student, Animal Genetic and Breeding
The effect of feeding graded levels of roasted sunflower (Helianthus Annuus L.) seed meal on weaner rabbit

Effect of weaning age and sex on bone development of pigs raised under intensive system and slaughtered at 70 kg body weight

Growth, haematological and serum biochemical indices of broiler chickens fed banana peel meal as replacement for maize in the semi-arid zone of Nigeria

ABSTRACT: The effects of feeding graded levels of roasted sunflower seed meal inclusion on the performance, nutrient digestibility and carcass characteristics of weaner rabbits were evaluated. Thirty six (Dutch x chinchilla) breeds of rabbit of mixed sexes were used for the experiment which lasted for nine weeks (63 days). They were matched for weight and randomly allotted to four treatments with nine rabbits per treatment and were replicated three times in a completely randomized block design. The levels of roasted sunflower seed meal were 0, 10, 20 and 30 % respectively. The diets and clean water were offered ad libitum throughout the experimental period. The productive performance results showed that rabbits on diet four consumed significantly (P<0.05) more feed than those on diets one (control), two and three, and the lowest feed intake were recorded in T1 (control). The final body weight, total weight gain, daily weight gain and the feed conversion ratio significantly (P<0.05) revealed higher mean values in T3 (20%) and T4 (30%) inclusion of roasted sunflower seed meal than the T1 (control). The feed cost (N/Kg) and Total feed cost (N) indicated significant (P<0.05) reduction among the treatment groups as the roasted sunflower seed meal levels inclusion in the diet increased. Significantly (P<0.05) better feed cost/Kg gain were obtained in T4 than T1 (control). The nutrient digestibility revealed significant (P<0.05) difference among the treatment groups in all the parameters, but the mean values were inferior in the T1 (control) than the T2, T3 and T4 respectively. The results of carcass characteristics revealed high significant (P<0.05) difference among the treatment groups except in the lungs, heart, small and large intestine, spleen and stomach. Based on these results, growing rabbits could tolerate up to 30 % roasted sunflower seed meal in their diets with no adverse effect.

Keywords: Rabbit, Sunflower seed, Performance and Carcass characteristics.

ABSTRACT: The aim of the study was to determine the effects of weaning age and sex on bone development of pigs raised under intensive system and slaughtered at 70 kg body weight. A total of 24 piglets were randomly assigned to 3 weaning ages: treatment 1 (21 days of age), treatment 2 (28 days of age) and treatment 3 (35 days of age). Feed and water were given ad libitum up to slaughter weight of 70 kg. Data were analysed as completely randomized design (CRD) using the General Linear Model (GLM) procedure of statistical analysis system, version 9.3. Weaning age did not have significant (P>0.05) effect on bone length and width of pigs. However, pigs weaned at 35 days of age tended to have longer femur (17.4 ± 0.17 cm), tibia (16.0 ± 0.19 cm) and humerus (15.6 ± 0.17 cm) than those weaned at 21 and 28 days of age. A 28 days weaning age resulted in significantly heavier femur (239.0 ± 6.19 g vs. 216.8 ± 6.19 g), tibia (145.8 ± 4.02 g vs. 132.0 ± 4.02 g) and humerus (211.7 ± 4.91 g vs. 195.9 ± 4.91 g) compared to the 21 and 28 days weaned pig. Tibia ash percentage was significantly higher (52.3 ± 0.65 %) in pigs weaned at 35 days of age compared to those weaned at 28 (47.6 ± 0.65 %) and 21 days (46.8 ± 0.65 %). Pigs weaned at 35 days had significantly higher tibia Ca content (38.4 ± 0.36 %) compared to those weaned at 28 (37.2 ± 0.36 %) and 21 days (36.9 ± 0.36 %). Phosphorus content of the tibia bone was significantly affected by weaning age. Mg content was not affected. Males had significantly heavier femurs (226.4 ± 3.89 g) than females (207.2 ± 3.89 g) pigs weaned at 21 days while tibia and humerus fresh weight of pigs weaned at 21 days was not affected by sex. Sex did not affect tibia mineral content at 21, 28 and 35 days weaning ages. Piglets can be weaned at 21 or 35 days of age without negatively affecting bone development. Twenty one days weaning age is recommended as pigs weaned at this age reach slaughter weight earlier than other weaning ages.

Keywords: Bone Length, Bone Mineral Content, Bone Weight, Sex, Weaning Age.

ABSTRACT: An experiment was conducted to investigate the replacement of maize with banana peel meal in broiler diets. One hundred and twenty (120) Anak 2000 broiler chicken were used for the study. Four diets were formulated using banana peel meal at 0%, 5%, 10%, and 15% levels in the respected diets. The birds were randomly allotted to dietary treatments in a completely randomized design. Each treatment consists of thirty birds with ten birds per replicate. The experiment lasted for eight weeks; feed and water were given ad libitum. The productive performance results indicated high significant (P<0.05) difference in final weight, daily weight gain and feed conversion ratio among the treatment group at different levels of replacement. Haematological indices and serum biochemical indices also followed similar pattern as the productive performance by revealing high significant (P<0.05) difference at different levels of maize replacement with banana peel meal in Packed cell volume (PCV), Red blood cell (RBC), Haemoglobin (Hb), White blood cell (WBC), Mean corpuscular volume (MCV), Mean corpuscular Haemoglobin (MCH), Haemoglobin concentration (Hb), Heterophils and Lymphocytes. The serum biochemical indices revealed high significant (P<0.05) difference in total protein, albumen, glucose, total
Influence of pre-treatment methods and levels of inclusion of cassava peel/blood meal mixtures on nutrient utilization and relative organ weights of rabbit does

ABSTRACT: A 12 weeks feeding trial was conducted to investigate the effects of pre-treatment methods and levels of inclusion of cassava peel/blood meal mixtures (3:2) on nutrient digestibility and relative organ weights of rabbits does. Ten diets were formulated with diet 1 serving as the control without cassava peel/blood meal mixture. Diets 2, 5 and 8 had 10% cassava peel/blood meal mixture, Diets 3, 6 and 9 had 20% cassava peel/blood meal mixture while Diets 4, 7 and 10 had 30% cassava peel/blood meal mixture. For diets 2, 3 and 4 cassava peels were ash-treated (ATD/BM), for diets 5, 6 and 7 the cassava peels were parboiled (PAB/BM) and for diets 8, 9 and 10 the cassava peels were sun dried (SUD/BM). The rabbits were divided into 10 treatment groups of six rabbits each and assigned randomly to the ten diets. Each rabbit served as a replicate in a randomized complete block design experiment in a factorial arrangement. The digestibility of nutrients was affected (P<0.05) by pre-treatment methods as well as levels of inclusion levels. Although the digestibility of the various nutrients differs (P<0.05) and did not follow a specific pattern, both the pre-treatment methods as well the levels of inclusion did not affect (P>0.05) the final Live weight of the rabbits. Pre-treatment methods as well as the level of inclusion affected (P<0.05) the relative organ weights of the spleen and kidney. From the results these non-conventional feed ingredients can be included in growing rabbit diet up to 30% level since performance especially final live weights were not affected.

Keywords: Pre-treatment, Cassava Peels, Rabbit, Digestibility, Organ Weights

Prevalence of Salmonella species in stray cats in Mosul city, Iraq

ABSTRACT: Stray carnivores are often exposed to intestinal infection with Salmonella species and might remain carriers for long period, so they have great possibilities for shedding these organisms; particularly the stray cats in cities are more than others because of their size and habits; thus they might contribute actively in contamination of environment. The aim of this study was to detect Salmonella species in stray cats and to access their role in spreading of salmonella infection. Rectal swabs from 59 apparently healthy cats were cultured, tetrathionate broth and Salmonella–Shigella agar were used. Euthanization and post mortem examinations were done later. Bacterial isolation from internal organs was carried out also. Morphological properties and biochemical tests were dependent for detection of Salmonella organisms. They were serotyped in Central Health Laboratory in Baghdad. A high isolation rate of Salmonellae (10.16%) was recorded (by rectal swabs). Various Salmonella serovars were observed: S. anatum (3.38%), S. montevideo (3.38%), S. typhimurium (1.69%) and S. brenderup (1.69%). The isolation rate from internal organs was lower (0.67%) than that from rectum, S. typhimurium (1.69%) and S. montevideo (1.69%) were isolated from small intestine and mesenteric lymph nodes respectively. Stray cats have great chances to get intestinal infection in comparison with the house cats due to their living style. In conclusion asymptomatic (carriers) stray cats were considered a dangerous source of infection with Salmonellae, besides their significant role in contamination of environment; they will threat public and animal health particularly in cities.

Keywords: Salmonella, Cats, Enteric Infection in Mosul.
Online Journal of Animal and Feed Research (OJAFR) is published in Iran. As an international journal we are always striving to add diversity to our editorial board and operations staff. Applicants who have previous experience relevant to the position they are applying for may be considered for more senior positions (Section Editor, SE) within OJAFR. All other members must begin as Deputy Section Editors (DSE) before progressing on to more senior roles. Editor and editorial board members do not receive any remuneration. These positions are voluntary.

If you are currently an undergraduate, M.Sc. or Ph.D. student at university and interested in working for OJAFR, please fill out the application form below. Once your filled application form is submitted, the board will review your credentials and notify you within a week of an opportunity to membership in editorial board. If you are Ph.D., assistant, associate editors, distinguished professor, scholars or publisher of a reputed university, please rank the mentioned positions in order of your preference. Please send us a copy of your resume (CV) or your Live DNA or briefly discuss any leadership positions and other experiences you have had that are relevant to applied Animal and Feed Researches or publications. This includes courses you have taken, editing, publishing, web design, layout design, and event planning.

If you would like to represent the OJAFR at your university, join our volunteer staff today! OJAFR representatives assist students at their university to submit their work to the OJAFR. You can also, registered as a member of OJAFR for subsequent contacts by email and or invitation for a honorary reviewing articles.

Contact us at editors@ojafr.ir or editorojafr@gmail.com

Download OJAFR Application Form:
THE EFFECT OF FEEDING GRADED LEVELS OF ROASTED SUNFLOWER (Helianthus Annuus L.) SEED MEAL ON WEANER RABBITS

H. DUWA*, A. Y. GIRGIRI, A. DAUDA, and J. U. IGWEBUIKE

Department of Animal Science, Faculty of Agriculture, University of Maiduguri, P.M.B. 1069, Maiduguri, Nigeria.

*Email: hduwa66@gmail.com

ABSTRACT: The effects of feeding graded levels of roasted sunflower seed meal inclusion on the performance, nutrient digestibility and carcass characteristics of weaner rabbits were evaluated. Thirty six (Dutch x chinchilla) breeds of rabbit of mixed sexes were used for the experiment which lasted for nine weeks (63 days). They were matched for weight and randomly allotted to four treatments with nine rabbits per treatment and were replicated three times in a completely randomize block design. The levels of roasted sunflower seed meal were 0, 10, 20 and 30 % respectively. The diets and clean water were offered ad libitum throughout the experimental period. The productive performance results showed that rabbits on diet four consumed significantly (P<0.05) more feed than those on diets one (control), two and three, and the lowest feed intake were recorded in T1 (control). The final body weight, total weight gain, daily weight gain and the feed conversion ratio significantly (P<0.05) revealed higher mean values in T3 (20%) and T4 (30%) inclusion of roasted sunflower seed meal than the T1 (control). The feed cost (N/Kg) and Total feed cost (N) indicated significant (P<0.05) reduction among the treatment groups as the roasted sunflower seed meal levels inclusion in the diet increased. Significantly (P<0.05) better feed cost/Kg gain were obtained in T3 than T1 (control). The nutrient digestibility revealed significant (P<0.05) difference among the treatment groups in all the parameters, but the mean values were inferior in the T1 (control) than the T2, T3 and T4 respectively. The results of carcass characteristics revealed high significant (P<0.05) difference among the treatment groups except in the lungs, heart, small and large intestine, spleen and stomach. Based on these results, growing rabbits could tolerate up to 30 % roasted sunflower seed meal in their diets with no adverse effect.

Keywords: Rabbit, Sunflower seed, Performance and Carcass characteristics.

INTRODUCTION

The increasing competition between man and his livestock for available gains and feed coupled with Nigeria neglect of Agriculture, has led to high cost of available feed resources. Agunbade et al. (2000) noted that apart from the fact that these are keenly competed for by humans, they are being imported into the country resulting in a situation that degenerate into a continuous rise in the cost of feed for human and animal feeding. Measures aimed at alleviating feed cost in animal production centered on the introduction of non-conventional feedstuffs. The non-conventional feed ingredient could be processed into a high quality feedstuff that can favourably supplement protein and energy sources which currently plays the dual note of feeding man and his livestock. Rabbits (oryctolagus cuniculus) have been recommended (Taiwo et al., 2005) as having the best productive advantage to utilize the non-conventional feed sources to bridge the protein gab.

In this respect, Taiwo et al. (2005) showed that sunflower seed has nutritive potentials as a feedstuff for livestock. The percent amino acid content was high and comparable to oil seeds such as soyabean, cotton seed and groundnut seed meal. A preliminary feeding trial conducted by Taiwo et al. (2005) using sunflower seed meal did not have adverse effect on the performance, nutrient digestibility and serum chemistry of rabbits. Sunflower is grown in many semi-arid regions of the world. It is tolerant of both low and high temperature (Putnamet al., 1990). NRC (1984) quoted sunflower seed meal figures 23.3 % protein, 31.6 % crude fibre, 1 % lysine, 0.5 % methionine and 1543 Kcal/Kg metabolizable energy. Reft (1997) reported that the major nutrient in sunflower seeds include protein, thiamine, vitamin E, iron, phosphorus, potassium, calcium and essential fatty acids such as linoleic and oleic acid. Sunflower seed also contained some anti-nutritional factors which include tannins and phytic acid (Khare, 2000; D’Mello, 2000 and Matyka et al., 1993). On this premise, this study was designed to measure the performance, nutrient digestibility and carcass characteristics of weaner rabbits fed rations with roasted sunflower seed meal (SSM) inclusion.
MATERIAL AND METHODS

Thirty six weaned rabbits (Dutch x chinchilla) breeds with age ranging from 5 to 6 weeks were randomly selected and assigned to four dietary treatment groups with nine rabbits per treatment and three per replicate in a completely randomized block design. Rabbit were housed in cages measuring 45 cm x 30 cm. the study lasted for nine weeks (63 days) with an initial one week adjustment period for the rabbits to get accustomed to the feed and confinement. Prior to the commencement the house together with the cages were thoroughly cleaned and disinfected. The rabbits were also pre-condition by de-worming them with Ivomec and administered prophylactic doses of coccidiostate for controlling coccidiosis respectively. The four experimental diets contain 0, 10, 20 and 30 % roasted sunflower seed meal in treatments T1 (control), T2, T3 and T4 respectively. The rabbits were fed in the morning daily. The quantity of feed supplied daily to them were weighed every morning from which the left over was removed to determine the daily feed intake. The rabbits were weighed at the beginning of the study and weekly thereafter while feed conversion ratio was calculated. Fresh clean drinking water was provided ad libitum daily. At the end of the 8th week of the experiment, three rabbits from each treatment were transferred into metabolic cages with facilities for separate collection of faeces over a period of seven days for nutrient digestibility studies.

At the end of the experiment three rabbits per treatment were randomly selected for carcass analysis. The rabbits were fasted for 12 hours before slaughtering and dressing was done by flaying dressed weights and gastrointestinal tract (GIT) weight were recorded immediately after evisceration. The different organs were carefully removed, weighed and expressed as a percentage of the live weight.

Processing of the sunflower seed meal
The sunflower seed were sand roasted; this involved the use of clean fine alluvial sand in a wide aluminium frying pan and heating the sand to the temperature of about 90°C. Sufficient quantity of batch of the raw seeds to cover about two-third of the area of sand was placed on the sand. The seeds and sand were mixed together by constant stirring with a wooden stick to prevent the burning of the seed coat and enhance even distribution of heat. The duration of the roasting was 2 – 3 minutes, the sand was then sieved from the seed and allowed to cool and then milled in hammer meal. The heat treated seed meal was used in compounding the experimental diet.

Statistical analysis
All data collected were subjected to analysis of variance (ANOVA) using completely randomized block design. Significant (P<0.05) difference among treatment means were determined by the least significant difference (LSD), as outlined by Steel and Torrie (1990).

RESULTS AND DISCUSSION

Proximate Composition of Experimental Diets
The results of the proximate composition are shown in Table 1. The analyzed crude protein (CP) value is slightly lower than the calculated value. The lower crude protein in the diet might be attributed to the level of protein in sunflower seed meal as shown in Table 1. NRC (1984) reported that sunflower seed meal contains about 23.30 % crude protein. The values of the ether extract (EE) falls below (10 – 20 %) recommended by Benjamin (1986), but far above the 2 – 25 % for maintenance and 3 – 5% for lactation reported by Bivin et al. (1988). Relf (1997) reported that sunflower seed meal contains about 90% poly unsaturated oil. Sunflower is one of the oldest oil producing plants and its seed have the highest oil content (close to 55 %), Spore (2006). The crude fibre values (CF) increases with increase in the levels of sunflower seed meal. The crude fibre level (8.73 – 10.34 %) is below the recommended levels 14 – 20 % (Lebas, 1980; Champe and Maurice, 1983). The ash content ranges between 7.54 – 9.01 %, which is adequate for rabbit growth. The metabolizable energy (ME) levels of the diet ranged from 2689 – 2908 Kcal/Kg. the energy levels of the diet were within the levels 2500 – 2900 Kcal/Kg recommended by Aduku and Olukosi (1990) for weaner rabbits.

Growth performance
The results of the performance are shown in Table 2. The final body weight, total weight gain, daily weight gain, daily feed intake and feed conversion indicated high significant (P<0.05) difference as influence by inclusion of roasted sunflower seed meal among the treatment groups. The result of the final body weight (1150.00 – 1625.99 g/rabbit) obtained at the end of the experiment was within the range (1140.11 – 1178.76 g/rabbit) reported by Onifade and Tewe (1993) for rabbits of similar ages. Rabbits on diet 4 (30 % sunflower seed meal) inclusion significantly (P<0.05) gained more weight than those on the other treatment groups. However, the mean daily weight gain (10.65 – 18.25 g/day) falls within the range of 10 – 20 g/day observed in most rabbits reared in tropical environment (Cheeke, 1987). The daily weight gain showed significant (P<0.05) difference among the treatments and is similar to the values 15 – 20 g/day reported by Schiere (1999) and 11.37 – 19.11 g/day reported by Njidda and Igwebuikie (2006) for rabbits. The performance by rabbits in this study was significantly higher (P<0.05) than 10 g/day and 7.8 g/day reported by Abu and Ekpeyoung (1993) but lower than 25.50 g/day reported by De-Blas and Garvey (1975) for rabbits under temperate conditions. The higher daily weight gain observed in T4 (18.25 g/day) may be attributed to the high feed intake observed in T4. It has been reported that adding fat to the diet increase growth rate of rabbit (Besidina, 1977) and that rabbit can tolerate up to 20 – 25 % fat in the diet depending on their ages (Aduku and Olukosi, 1990). Inclusion of sunflower seed meal up to 30 % in
this study is observed to increase live weight of rabbits. The daily feed intake was significantly higher (P<0.05) in T4 (58.95 g/day) and lowest in T1 (46.70 g/day). Minson (1983) reported that animal intake is directly related to dry matter digestibility (DMD). From the result, it clearly shows that the DMD of T4 was better than the other treatment groups followed by T2 (66.17 %) and T3 (63.42 %) respectively. The daily feed intake for T2, T3 and T4 were figuratively higher than the T1 (control) group though there were no significant (P>0.05) difference between T1 and T2. The feed conversion ratio (FCR) ranges from (2.79 - 4.38). The best feed conversion ratio (FCR) was observed in T4 (2.79). The feed conversion ratio (FCR) was lower than 6.91 – 7.30 reported by Abu and Ekpeyoung (1991). The differences observed in the feed conversion ratio (FCR) may be attributed to the composition of the diet. Relatively all the rabbits receiving sunflower seed meal in the diets recorded better FCR than the control (0 % sunflower seed meal). The feed cost (N/Kg) and feed cost / Kg gain indicated significant (P<0.05) difference among all the inclusion levels. The feed cost (N/Kg) and total feed cost (N) decreased with increasing level of roasted sunflower seed meal up to 30 %. The highest feed cost (N/Kg) and total feed cost (N) was recorded in T1 (control) and the least was in T4 (30%) inclusion of roasted sunflower seed meal. While the feed cost per Kg gain, decreased with increasing level of roasted sunflower seed meal in the diet. The result obtained in this study was desirable in rabbit diet because the inclusion of roasted sunflower seed meal decreased the feed cost and gave better returns in terms of feed cost per Kg gain. This observation agreed with the report of Apata and Ojo (2000) that the high cost of feed was largely due to the exorbitant price and scarcity of conventional feed ingredients. Similarly, Smith et al. (1981) also observed that unconventional plant protein sources drastically reduced feed cost (N/Kg) and these gave better feed cost per Kg gain.

Table 1 - Ingredient and chemical composition of experimental diet

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>T1 (control)</th>
<th>T2 10%</th>
<th>T3 20%</th>
<th>T4 30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>32</td>
<td>21</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>Soyabean (full-fat)</td>
<td>19</td>
<td>15</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Sunflower meal</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Groundnut hulls</td>
<td>15</td>
<td>18</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Maize offal</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Bone meal</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Salt</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Min./Vit. premix*</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Calculated analyses

Crude protein	16.00	16.00	16.00	16.00
Energy (Kcal/kg)	2689	2752	2830	2908
Lysine (%)	0.66	0.65	0.61	0.60
Methionine + cystine (%)	0.50	0.53	0.55	0.58
Calcium (%)	1.20	1.22	1.23	1.24
Phosphorus (%)	0.77	0.79	0.80	0.82

Chemical Analyses

<table>
<thead>
<tr>
<th>Raw</th>
<th>Roasted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude protein</td>
<td>16.00</td>
</tr>
<tr>
<td>Energy (Kcal/kg)</td>
<td>2689</td>
</tr>
<tr>
<td>Lysine (%)</td>
<td>0.66</td>
</tr>
<tr>
<td>Methionine + cystine (%)</td>
<td>0.50</td>
</tr>
<tr>
<td>Calcium (%)</td>
<td>1.20</td>
</tr>
<tr>
<td>Phosphorus (%)</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Table 2 - Performance of rabbit fed graded levels of sunflower seed meal

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Treatment</th>
<th>T1 (control)</th>
<th>T2 10%</th>
<th>T3 20%</th>
<th>T4 30%</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial body weight (g)</td>
<td>478.82</td>
<td>474.10</td>
<td>477.30</td>
<td>475.40</td>
<td>0.200</td>
<td></td>
</tr>
<tr>
<td>Final body weight (g)</td>
<td>1150.00b</td>
<td>1200.11b</td>
<td>1500.15a</td>
<td>1625.19a</td>
<td>123.500*</td>
<td></td>
</tr>
<tr>
<td>Total weight gain (g)</td>
<td>671.18a</td>
<td>726.01c</td>
<td>1022.85b</td>
<td>1149.79a</td>
<td>104.830*</td>
<td></td>
</tr>
<tr>
<td>Daily weight gain (g)</td>
<td>10.65c</td>
<td>11.52c</td>
<td>16.34b</td>
<td>18.25a</td>
<td>1.820*</td>
<td></td>
</tr>
<tr>
<td>Daily feed intake (g)</td>
<td>46.70c</td>
<td>47.34c</td>
<td>54.48b</td>
<td>58.95a</td>
<td>0.40*</td>
<td></td>
</tr>
<tr>
<td>Feed conversion ratio</td>
<td>4.38a</td>
<td>4.17a</td>
<td>3.33b</td>
<td>2.79c</td>
<td>0.013*</td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td>0.40a</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Feed cost (N/kg)</td>
<td>64.30a</td>
<td>61.10a</td>
<td>57.90c</td>
<td>54.10c</td>
<td>6.340*</td>
<td></td>
</tr>
<tr>
<td>Total feed cost (N)</td>
<td>196.13a</td>
<td>196.13a</td>
<td>189.17b</td>
<td>172.66c</td>
<td>10.130*</td>
<td></td>
</tr>
<tr>
<td>Feed cost/kg gain</td>
<td>167.50c</td>
<td>184.51b</td>
<td>188.08b</td>
<td>237.95a</td>
<td>11.460*</td>
<td></td>
</tr>
</tbody>
</table>

* Mean within the same row with different superscripts significantly (P<0.05) different; \(^* \) = significant (P<0.05) different; SEM = Standard Error of Means.
Nutrient digestibility

The result of the nutrient digestibility is shown in Table 3. There were high significant (P<0.05) differences among treatments for dry matter digestibility (DMD), crude protein digestibility (CPD), crude fibre digestibility (CFD) and ether extract digestibility (EED). The dry matter of T1 (control) is significantly (P<0.05) inferior to groups on roasted sunflower seed meal based diets while the highest was recorded in T4 in all parameters. The effects of fat on digestibility of the diet are equivocal.

Benjamin (1986) reported that the addition of vegetable oil to a ration did not have any effect on digestion of dry matter, ether extract and crude protein. On the contrary, a decrease in digestibility of dry matter, organic matter and energy was reported by Lebas (1975) on addition of oil. The crude fibre digestibility (CFD) range between (52.33 - 59.32 %). The treatment groups on roasted sunflower seed meal diet perform better than the T1 (control) group, though the crude fibre digestibility was not adversely affected. The crude fibre digestibility shows slight depression than the other nutrient digestibility except for ash. Variations exist in the coefficient for the most commonly used feedstuffs. Variation in fibre digestibility is especially wide, making interpretation difficult (Pairet et al., 1986). A possible explanation in the discrepancies may lie in the failure to include the composition of soft faeces in the calculation. In germ free rabbits, which do not practices coprophagy, digestibility coefficient of fat and protein are increased and carbohydrate and fibre decrease (De-Blas and Gidenne, 1998). This could be the possible explanation observed in the decrease of the crude fibre digestibility. The crude protein digestibility (CPD) were significantly higher (P<0.05) in all the treatment groups with the highest in T4 (84.39 %) and lowest in T1 (76.32 %). The digestibility of crude protein increases as the dietary crude protein level rises, but becomes markedly depressed by an increase in crude fibre content of a diet (Lang, 1981). It shows that crude fibre (CF) content of the feed (Table 1) was higher, that might be the possible cause of depression in crude protein digestibility (CPU) of T1 (control). Lang (1981) also reported that the digestibility of most nutrients has been shown to increase as protein level rises. The result of the ether extract digestibility (EED) shows that the ether extract digestibility (EED) increases with increase in the level of roasted sunflower seed meal. The ether extract digestibility (EED) ranges from (62.86 – 81.23 %) with the highest in T4 (30 %) roasted sunflower seed meal inclusion. Sirato-Yasumoto et al. (2001) suggested that the presence of saponified fat which is not detected by ether extraction may have resulted in seriously high nutrient digestibility of fat been quoted in many experiments. The ash digestibility (AD) is shown to increase with increase in the levels of roasted sunflower seed meal.

<table>
<thead>
<tr>
<th>Nutrient (%)</th>
<th>Treatment</th>
<th>T1 (control)</th>
<th>T2 10%</th>
<th>T3 20%</th>
<th>T4 30%</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter (DM)</td>
<td>60.13a</td>
<td>66.17b</td>
<td>63.42b</td>
<td>81.68a</td>
<td>1.210*</td>
<td></td>
</tr>
<tr>
<td>Crude protein (CP)</td>
<td>76.32a</td>
<td>78.32c</td>
<td>80.13b</td>
<td>84.39a</td>
<td>0.030*</td>
<td></td>
</tr>
<tr>
<td>Ether Extract (EE)</td>
<td>62.86b</td>
<td>71.72b</td>
<td>78.63a</td>
<td>81.23a</td>
<td>1.140*</td>
<td></td>
</tr>
<tr>
<td>Crude fibre (CF)</td>
<td>52.33a</td>
<td>55.23b</td>
<td>56.72b</td>
<td>59.32a</td>
<td>0.310*</td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>32.00a</td>
<td>52.50c</td>
<td>67.57a</td>
<td>73.33b</td>
<td>2.410*</td>
<td></td>
</tr>
</tbody>
</table>

*Mean within the same row with different superscripts significantly (P<0.05) different; * = significant (P<0.05) different; SEM = Standard Error of Means

Carcass characteristics

The results of carcass measurement are shown in Table 4. There were high significant (P<0.05) treatment effects on slaughter weight, carcass weight and dressing percentage, the highest mean values were revealed in rabbits fed T4 containing 30% roasted sunflower seed meal and the lowest in T1 (control). The higher dressing percentage range from 43.28 – 70.78 % obtained may be related to the higher fat content recorded with carcass. This is similar to the report of Fielding (1991) who reported dressing percentage of 50 – 56 % and tends to be greater if the rabbits are fully grown. This was also observed in this study where T4 having the highest percentage (70.78%) also had highest abdominal fat (11.25%), while T1 (control) having the lowest (43.28%) dressing percentage had the lowest abdominal fat (7.35%). The study revealed that there was a relationship between dressing percentage and abdominal fat of carcass. Significant (P<0.05) difference in T4 with 30% roasted sunflower seed meal were however observed for some of the organs which include liver, kidney, back and caecum while lungs, heart, small and large intestine, spleen and stomach indicated no significant (P>0.05) difference among the treatment groups.

The finding in this study concur with the report of Epo et al. (2009) and Alciceek et al. (2005) who fed cassava tuber meals and 20% sunflower seed meal to rabbits but did not showed any significant (P<0.05) difference among treatments for heart, lungs, spleen, liver and stomach. It is a common practice in feeding trials to use weights of some internal organs like liver and kidneys as indicators of toxicity. Bone (1979) reported that if there is any toxic elements in the feed, abnormalities in weights of liver and kidney would be observed. The abnormalities arise because of increased metabolic rate of the organ in attempt to reduce these toxic elements or anti-nutritional factors to no-toxic metabolites. The observations in this study suggest that the test diets did not contain any appreciable toxin.
Table 2 - Carcass Characteristics of Rabbits fed Graded Levels of Sunflower Seed Meal

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Treatment</th>
<th>T1 (control)</th>
<th>T2 10%</th>
<th>T3 20%</th>
<th>T4 30%</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slaughter weight</td>
<td></td>
<td>1000.04b</td>
<td>1033.11b</td>
<td>1234.62a</td>
<td>1318.22a</td>
<td>123.500*</td>
</tr>
<tr>
<td>Carcass weight</td>
<td></td>
<td>497.70a</td>
<td>509.85b</td>
<td>689.35a</td>
<td>727.65a</td>
<td>164.890*</td>
</tr>
<tr>
<td>Dressing percentage</td>
<td></td>
<td>43.28c</td>
<td>45.49c</td>
<td>57.96b</td>
<td>70.78a</td>
<td>12.470*</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td>40.35d</td>
<td>45.10c</td>
<td>44.70b</td>
<td>57.05b</td>
<td>9.750*</td>
</tr>
<tr>
<td>Lungs</td>
<td></td>
<td>10.35</td>
<td>10.48</td>
<td>11.24</td>
<td>10.22</td>
<td>1.010</td>
</tr>
<tr>
<td>Heart</td>
<td></td>
<td>3.00</td>
<td>2.95</td>
<td>3.16</td>
<td>3.99</td>
<td>1.620</td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td>8.30b</td>
<td>8.50b</td>
<td>10.70a</td>
<td>10.90a</td>
<td>2.670*</td>
</tr>
<tr>
<td>Back</td>
<td></td>
<td>77.01c</td>
<td>93.76b</td>
<td>95.21b</td>
<td>105.72a</td>
<td>18.001*</td>
</tr>
<tr>
<td>Small intestine</td>
<td></td>
<td>89.60</td>
<td>87.25</td>
<td>90.80</td>
<td>88.80</td>
<td>3.280</td>
</tr>
<tr>
<td>Large intestine</td>
<td></td>
<td>105.55</td>
<td>103.45</td>
<td>107.95</td>
<td>108.91</td>
<td>5.390</td>
</tr>
<tr>
<td>Caecum</td>
<td></td>
<td>24.70c</td>
<td>24.90c</td>
<td>20.50b</td>
<td>30.50a</td>
<td>4.676*</td>
</tr>
<tr>
<td>Spleen</td>
<td></td>
<td>1.10</td>
<td>1.45</td>
<td>1.00</td>
<td>1.80</td>
<td>1.340</td>
</tr>
<tr>
<td>Stomach</td>
<td></td>
<td>90.75</td>
<td>92.35</td>
<td>91.20</td>
<td>90.65</td>
<td>2.440</td>
</tr>
<tr>
<td>Abdominal fat</td>
<td></td>
<td>7.35b</td>
<td>8.89b</td>
<td>10.85a</td>
<td>11.25a</td>
<td>1.340*</td>
</tr>
</tbody>
</table>

* and ** Mean within the same row with different superscripts significantly (P<0.05) different; * = significant (P<0.05) different; SEM = Standard Error of Means

CONCLUSION

Based on the results obtained, it appears that the inclusion of roasted sunflower seed meal into the diets of rabbits up to 30% has no negative effect on the performance, nutrient digestibility and carcass characteristics of weaner rabbits.

REFERENCES

To cite this paper:
EFFECT OF WEANING AGE AND SEX ON BONE DEVELOPMENT OF PIGS RAISED UNDER INTENSIVE SYSTEM AND SLAUGHTERED AT 70 KG BODY WEIGHT

B. GANELANG*, J.C. MOREKI, C.M. TSOPITO, S.J. NSOSO

Department of Animal Science and Production, Botswana College of Agriculture, Private Bag 0027, Gaborone, Botswana.

*Email: bganelang@live.com

ABSTRACT: The aim of the study was to determine the effects of weaning age and sex on bone development of pigs raised under intensive system and slaughtered at 70 kg body weight. A total of 24 piglets were randomly assigned to 3 weaning ages: treatment 1 (21 days of age), treatment 2 (28 days of age) and treatment 3 (35 days of age). Feed and water were given ad libitum up to slaughter weight of 70 kg. Data were analysed as completely randomized design (CRD) using the General Linear Model (GLM) procedure of statistical analysis system, version 9.3. Weaning age did not have significant (P > 0.05) effect on bone length and width of pigs. However, pigs weaned at 35 days of age tended to have longer femur (17.4 ± 0.17 cm), tibia (16.0 ± 0.19 cm) and humerus (15.6 ± 0.17 cm) than those weaned at 21 and 28 days of age. A 28 days weaning age resulted in significantly heavier femur (239.0 ± 6.19 g vs. 216.8 ± 6.19 g), tibia (145.8 ± 4.02 g vs. 132.0 ± 4.02 g) and humerus (211.7 ± 4.91 g vs. 195.9 ± 4.91 g) compared to 21 day weaning age. Tibia ash percentage was significantly higher (52.3 ± 0.65 %) in pigs weaned at 35 days of age compared to those weaned at 28 (47.6 ± 0.65 %) and 21 days (46.8 ± 0.65 %). Pigs weaned at 35 days had significantly higher tibia Ca content (38.4 ± 0.36 %) compared to those weaned at 28 (37.2 ± 0.36 %) and 21 days (36.9 ± 0.36%). Phosphorus content of the tibia bone was significantly affected by weaning age while Mg content was not affected. Males had significantly heavier femurs (226.4 ± 3.89 g) than females (207.2 ± 3.89 g) pigs weaned at 21 days while tibia and humerus fresh weight of pigs weaned at 21 days was not affected by sex. Sex did not affect tibia mineral content at 21, 28 and 35 days weaning ages. Piglets can be weaned at 21 or 35 days of age without negatively affecting bone development. Twenty one days weaning age is recommended as pigs weaned at this age reach slaughter weight earlier than other weaning ages.

Keywords: Bone Length, Bone Mineral Content, Bone Weight, Sex, Weaning Age.

INTRODUCTION

In conventional pig farming, weaning involves separation of piglets from the sow and littersmates, often mixing piglets with unknown peers and the loss of milk which is the main source of nutrition, thus exposing young piglets to several stressors (Hotzel et al., 2010). Pigs are weaned at around 30 days of age and then raised to market weight, often in the same buildings which can serve as breeding areas for pathogens leading to reinfecion of the whole population of pigs in the farm (Whiting and Pasma, 2008). In the past decade, segregated- and medicated-early-weaning practices have been used by swine producers to optimize the health of their piglets to increase feed efficiency and growth performance which improve economic efficiency (Johnson et al., 2012). Biological changes in metabolism, immune system, and intestinal functions occur during and immediately after weaning that may have both short and long-term effects on pig growth and health, regardless of age of pig at weaning (Campbell et al., 2013).

Some of the benefits of early weaning age (≤21 days) include increased facility utilisation, increased numbers of litters per sow per year and a reduction in the spread of diseases (Worobec, 1997). However, early weaning is stressful because the piglet must quickly adapt to dramatic changes in its social and physical environment. These combined stressors have a significant impact on post weaning pig health and welfare through reductions in feed intake and performance, development of behavioural vices, and increased susceptibility to disease (Moeser et al., 2007; Colson, 2006). However, special diets and management schemes have been developed to overcome nutritional problems associated with early weaning. On the other hand, late weaning reduces stress, increases post-weaning feed intake but does not improve intestinal functionality; hence it is economically not sustainable (van der Meulen et al., 2010). Most of the differences between early-weaned and late-weaned pigs are evident soon after weaning but they disappear before slaughter (Hohenshell et al., 2000).

There is still much debate about what age piglets should be weaned (Shipka, 2011; King, 2013) as both early weaning and late weaning have advantages and disadvantages. Therefore, it is important to identify age at weaning suitable for Botswana conditions that would promote growth, performance, welfare of animals and economic
viability of piggeries. Therefore, this study was carried out to determine the effect of weaning age and sex on bone development of pigs raised under intensive system and slaughtered at 70 kg body weight.

MATERIAL AND METHODS

The experiment was carried out at Chemae Farm, near Matebeleng village in Kgatleng District from May to November 2013. The site is situated on 24° 32’ 54.12” S 26° 1’ 3.55” E, at an altitude of 980 m above sea level. The area had average daily temperature of 15 °C in winter (May to July) and 29 °C in summer (August to November).

Animal management
Forty eight piglets [(Landrace x Large white) x Topigs (Tempo x Topigs 40) x Topigs] cross were randomly assigned to 3 treatments. There were 4 replicates in each treatment and each replicate had 4 pigs (2 males and 2 females). Treatment 1 was for piglets weaned at 21 days, treatment 2 at 28 days and treatment 3 at 35 days. Twenty-eight day weaning period served as a control. Teeth and tail cutting were carried out when piglets were 1 day old while iron injection and castration were done at 3 days of age. Iron injection was administered intramuscularly on the neck. Castration was performed surgically using sharp and disinfected blades.

Pigs were not vaccinated against any disease but were treated for internal parasites using piperazine (active ingredient: piperazine adipate 100%) at 1.2 g/10 kg body weight. Triatix pour on (active ingredient: amitraz 2% m/v) was used to control external parasites. Cosumix Plus (active ingredients: sulphachlorpyridazine sodium and trimethoprim) and sulfazine 33 1/3 % (active ingredient: sulphaclidimidine) were used to treat pigs for diarrhoea. The pigs were raised in 12 pens each measuring 2.2 m x 2.2 m in a naturally ventilated house with concrete floor and corrugated iron roofing. Wheat straw was used as bedding material and was replaced every fortnight. During cold days, heating was provided to the piglets using coal.

Diets
The pigs in all treatments were fed commercial diets that complied with Botswana Bureau of Standards pig feeds specification (BOS 190:2006). From 10 to 35 days of age, piglets were offered creep feed, weaner diet from 35 to 70 days of age and thereafter grower diet up to slaughter weight of 70 kg. Feed and water were provided ad libitum throughout the study period. The analysed nutritive composition of the diets expressed in g/kg is shown in Table 1.

Data collection
At 70 kg body weight, pigs were transported early in the morning (i.e., 0700 hr.) in an open vehicle with rails to a local abattoir in Gaborone for slaughter. Upon arrival at the abattoir, the pigs were held in lairage for 12 hr. with free access to water until slaughter the following morning. The animals were slaughtered humanely by electrical stunning (240 V, 0.5 A, 5s), exsanguinated, scalded, dehaired and eviscerated (Serrano et al., 2009). After slaughter, the carcasses were hanged so that blood drains away. Ante mortem and post-mortem inspections were carried out by meat inspectors in accordance with Livestock and Meat Industries Act of 2007. After inspection, the carcasses were chilled at 7 °C for 24 hr.

Table 1. Nutrient composition of diets offered to pigs raised under intensive system

<table>
<thead>
<tr>
<th>Nutrient (g/kg)</th>
<th>Creep diet</th>
<th>Weaner diet</th>
<th>Grower diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude protein</td>
<td>185.1 ± 0.34</td>
<td>156.7 ± 7.15</td>
<td>148.5 ± 0.84</td>
</tr>
<tr>
<td>Moisture</td>
<td>85.2 ± 0.53</td>
<td>72.9 ± 0.58</td>
<td>76.8 ± 0.18</td>
</tr>
<tr>
<td>Crude fibre</td>
<td>14.9 ± 0.006</td>
<td>22.4 ± 1.33</td>
<td>64.0 ± 9.66</td>
</tr>
<tr>
<td>Crude fat</td>
<td>10.9 ± 0.27</td>
<td>17.4 ± 0.37</td>
<td>19.1 ± 0.35</td>
</tr>
<tr>
<td>Calcium</td>
<td>7.3 ± 0.07</td>
<td>5.5 ± 0.04</td>
<td>4.5 ± 0.03</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>4.5 ± 0.06</td>
<td>3.3 ± 0.08</td>
<td>4.5 ± 0.05</td>
</tr>
</tbody>
</table>

Ante mortem treatment
At 70 kg body weight, pigs were transported early in the morning (i.e., 0700 hr.) in an open vehicle with rails to a local abattoir in Gaborone for slaughter. Upon arrival at the abattoir, the pigs were held in lairage for 12 hr. with free access to water until slaughter the following morning. The animals were slaughtered humanely by electrical stunning (240 V, 0.5 A, 5s), exsanguinated, scalded, dehaired and eviscerated (Serrano et al., 2009). After slaughter, the carcasses were hanged so that blood drains away. Ante mortem and post-mortem inspections were carried out by meat inspectors in accordance with Livestock and Meat Industries Act of 2007. After inspection, the carcasses were chilled at 7 °C for 24 hr.

Bone length, bone shaft width (Kanakov et al., 2004). Bone lengths and bone shaft widths were measured using digital calliper with accuracy of 0.001 mm (Chiripasi et al., 2010) bone deboning of the carcasses while with accuracy of 0.001 mm (Chiripasi et al., 2010) bone deboning of the carcasses while

Calcium and Mg were determined using flame atomic absorption spectrophotometer (make: Varian Australia PTY Ltd, model: 220 FS) while P was determined using ultra violet spectrophotometer (make: Shimadzu, model: UV - 1800).

Statistical analysis

Data were analysed as completely randomized design (CRD) using the General Linear Model (GLM) procedure of Statistical Analysis System, version 9.3 (SAS Institute, 2010). The reported least squares means were separated using least significant difference (t test). The significance level considered for all the statistical tests was $P < 0.05$.

The following statistical model was used for the analysis:

$$Y_{ijk} = \mu + W_i + S_j + (WS)_{ij} + \beta(AGE_{ijk} - AGE) + \epsilon_{ijk}$$

where Y_{ijk} response variable (bone development: bone length, width, fresh weight, dry weight, ash %, Ca %, P %, Mg %)

μ general mean,

W_i effect of weaning age at level i (21 days, 28 days, 35 days),

S_j effect of sex at level j (male, female),

$(WS)_{ij}$ effect of interaction WS at level ij,

β linear regression coefficient of AGE_{ijk} on age at slaughter,

AGE mean age of animals at slaughter,

AGE_{ijk} age of individual animals at slaughter,

ϵ_{ijk} random error.

RESULTS AND DISCUSSION

Bone length

Weaning age did not have significant effect on bone length of pigs slaughtered at 70 kg body weight (Table 2). Pigs weaned at 35 days tended to have longer femur (17.4 vs.17.1 cm), tibia (16.0 vs.15.8 cm) and humerus (15.6 vs.15.2 cm) than those weaned at 28 days. Pigs weaned at 21 days of age had 17.0, 15.9 and 15.3 cm for femur, tibia and humerus lengths, respectively. The current results are consistent with Richmond and Berg (1972) who reported 15.52 cm, 17.10 cm, 16.25 cm for humerus, femur and tibia lengths, respectively for pigs weaned at 21 days and slaughtered at 68 kg. Chaudhary and Price (1987) reported femur and humerus length of 16.9 and 16.0 cm, respectively for pigs weaned at 21 days and slaughtered at 179.5 days of age. Furthermore, Liu et al. (1999) reported shorter humerus (13.04±0.58 cm), femur (14.11±0.64 cm) and tibia (12.95±0.63 cm) for pigs slaughtered at 84 days of age. According to Mao et al. (2008), studies in mice and chickens have shown that the limb bone lengths are strongly controlled by genes. Therefore, environmental factors like weaning age are unlikely to have significant effect on bone length.

As expected, pigs weaned at 35 days had numerically longer bones compared to 21 and 28 day weaning ages. Hohenshell et al. (2000) observed an improvement in average daily gain of early-weaned pigs compared with late-weaned pigs. It was suggested by Do (2012) that increasing weaning age up to 32 days can be an effective production strategy to improve growth rate which is consistent with current results.

Bone width

Weaning age did not have significant effect on bone width (Table 2). Femur width remained the same (23.0 mm) in all the weaning ages. Carter and Cromwell (1998) reported femur width of 26.90 mm which is greater than 23.0 mm found in the current study. In this study, pigs were slaughtered at 70 kg while in the study by Carter and Cromwell (1998) they were slaughtered at 114 kg body weight. Tibia and humerus were numerically wider for pigs weaned at 21 days than those weaned at 28 days. Compared to 28 day weaning age, 35 day weaning age had numerically narrower tibia (20.8 mm) and wider humerus (26.2 mm). These slight variations in bone widths could be due to differences in genetics and level of bone mineralization.

Bone weight

Fresh weight: Bone fresh weight was significantly ($P<0.05$) influenced by weaning age (Table 2). At 21 days weaning age resulted in lighter femur (216.8 g), tibia (132.0 g) and humerus (195.9 g) compared to 28 day weaning age. The current results are consistent with Richmond et al. (1972) who recorded weights of 207.7 g, 227.74 g and 160.48 g for humerus, femur and tibia, respectively of pigs weaned at 21 days and slaughtered at 68 kg. Similarly, Chaudhary and Price (1987) reported femur and humerus fresh weights of 243.0 and 226.0 g, respectively for pigs weaned at 21 days and slaughtered at 179.5 days of age. Narayanan et al. (2008) stated that pigs weaned at 21 days require more days to reach market weight, and hence recommended 28 day weaning age. In the current study, there was significant difference in tibia fresh weight for pigs weaned at 28 and 35 days. The tibia fresh weight of pigs weaned at 28 days was 145.8 g while it was 132.9 g for pigs weaned at 35 days. However, there was no significant difference in bone fresh weight for pigs weaned at 21 and 35 days although 35 day weaning age tended to have higher numerical values (Table 2). These findings disagree with Danko and Bilkei (2004) who found that early weaned pigs were heavier at slaughter than late weaned ones. Variations in bone weight could be attributable to bone tissue deposition and resorption that continuously occur in the body of a living animal (Hanagriff, 2012).
Table 2. Means and standard errors of lengths, widths, weights and mineral content of bones of pigs raised under intensive system, weaned at different ages and slaughtered at 70 kg body weight

<table>
<thead>
<tr>
<th>Variable</th>
<th>21 days</th>
<th>28 days</th>
<th>35 days</th>
<th>SEM</th>
<th>LSD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone length (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>17.0a</td>
<td>17.1a</td>
<td>17.4a</td>
<td>0.17</td>
<td>0.50</td>
<td>0.36</td>
</tr>
<tr>
<td>Tibia</td>
<td>15.9a</td>
<td>15.8a</td>
<td>16.0a</td>
<td>0.19</td>
<td>0.56</td>
<td>0.71</td>
</tr>
<tr>
<td>Humerus</td>
<td>15.3a</td>
<td>15.2a</td>
<td>15.6a</td>
<td>0.17</td>
<td>0.52</td>
<td>0.51</td>
</tr>
<tr>
<td>Bone width (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>23.0a</td>
<td>23.0a</td>
<td>23.0a</td>
<td>0.41</td>
<td>1.22</td>
<td>0.96</td>
</tr>
<tr>
<td>Tibia</td>
<td>21.3a</td>
<td>21.1a</td>
<td>20.8a</td>
<td>0.46</td>
<td>1.37</td>
<td>0.23</td>
</tr>
<tr>
<td>Humerus</td>
<td>25.9a</td>
<td>25.5a</td>
<td>26.2a</td>
<td>0.34</td>
<td>1.00</td>
<td>0.10</td>
</tr>
<tr>
<td>Bone fresh weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>216.8a</td>
<td>239.0a</td>
<td>223.8ab</td>
<td>6.19</td>
<td>18.40</td>
<td>0.04</td>
</tr>
<tr>
<td>Tibia</td>
<td>132.0a</td>
<td>145.8a</td>
<td>132.9a</td>
<td>4.02</td>
<td>11.93</td>
<td>0.04</td>
</tr>
<tr>
<td>Humerus</td>
<td>195.9a</td>
<td>211.7a</td>
<td>204.2ab</td>
<td>4.91</td>
<td>14.60</td>
<td>0.01</td>
</tr>
<tr>
<td>Bone dry weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>122.9a</td>
<td>142.4a</td>
<td>128.7a</td>
<td>4.47</td>
<td>13.29</td>
<td>0.02</td>
</tr>
<tr>
<td>Tibia</td>
<td>76.9a</td>
<td>89.0a</td>
<td>80.4a</td>
<td>2.63</td>
<td>7.80</td>
<td>0.01</td>
</tr>
<tr>
<td>Humerus</td>
<td>115.2a</td>
<td>127.6a</td>
<td>118.6ab</td>
<td>3.26</td>
<td>9.68</td>
<td>0.04</td>
</tr>
<tr>
<td>Slaughter age (days)</td>
<td>130.8a</td>
<td>134.6a</td>
<td>137.0b</td>
<td>1.59</td>
<td>4.72</td>
<td>0.04</td>
</tr>
</tbody>
</table>

SEM = Standard error of means. LSD = Least Significant Difference. a, b Means within the same row having different letters differ significantly; P < 0.05

Dry weight

Dry weight was significantly higher in pigs weaned at 28 day of age compared to other weaning ages. Pigs weaned at 28 days tended to have heavier dry humerus (127.6 g) than those weaned at 35 days (118.6 g). No significant difference in bone dry weights from pigs weaned 21 and 35 days weaning ages was observed although 35 day weaning age tended to have heavier bones (Table 2). The heavier bones from pigs weaned at 35 days could be due to the fact that pigs were on sow’s milk longer than other weaning ages. Petrović et al. (2009) stated that the characteristic feature of the suckling period of piglets is an extremely rapid development of bones enabled by unique milk nutrition with a high fat content provided by the dam.

Slaughter age

Weaning age had significant (P<0.05) influence on slaughter age (Table 2). In this study, pigs weaned at 35 days of age took a longer time (137 days) to reach market weight (70 kg) compared to those weaned at 21 days of age (130.8 days). However, there was no significant difference in slaughter age between 28 day weaning age and other weaning ages. These results agree with Danko and Bilkei (2004) who found that days to slaughter do not differ between the early or late weaned pigs.

Bone mineral content

Tibia ash was significantly higher at 35 days weaning age (52.3%) compared to 21 days (46.8%) and 28 days (47.6%) weaning ages (Table 3). However, weaning age did not have significant influence on ash content of pigs weaned at 21 and 28 days. The ash content of 47.6% in the present study is lower than the ash contents of 53.5 to 61.1% reported by Crenshaw et al. (1981) in pigs weaned at 28 days. It is also lower than 57.6% reported by Kornegay et al. (1973). The ash content of tibia in the current study is higher than 37.4% for pigs weaned at 17 days of age reported by Jolliff and Mahan (2012). The variation in the ash contents could be due to the young age (56 days) at which the pigs were slaughtered in the study by Jolliff and Mahan (2012) compared to the slaughter age of 130.8 days in the current study. Previous study by Field (2000) found that bone ash content increases with age.

There was significant difference in Ca content between 35 day weaning age and other weaning ages (Table 3). However, the Ca content of tibia bone was not significantly (P>0.05) different between 21 and 28 day weaning ages. Pigs weaned at 35 days had the highest Ca content (38.4%) and those weaned at 21 days the lowest Ca content (36.9%). There was no significant difference in P content between 28 and 35 day weaning ages although 28 weaning age tended to have higher P content (18.3%) compared to 35 days (17.4%). Phosphorus content was significantly less (16.9%) for pigs weaned at 21 days compared to those weaned at 28 days (18.3%). The current results are consistent with Field (2000) who reported Ca and P contents of bones of mammals of 37% and 17%, respectively, Varley et al. (2010) reported lower P (8.59%) and Ca (18.19%) contents in metacarpal bones. According to Saravia et al. (2011), bone resorption occurs in order to maintain P and Ca ratio resulting in a decrease of bone mineral content. In the current study, weaning age did not have significant (P > 0.05) effect on Mg content of tibia bone although pigs weaned at 21 days tended to have higher content of Mg (0.54%) (Table 3).

Influence of sex on bone development

Bone length: Sex had no significant (P>0.05) effect on bone length of pigs weaned at 21, 28 and 35 days (Tables 4 to 6). The current results are consistent with Tatara et al. (2012) who found no significant difference between sexes in the length of femur of pigs. In the current study, females had longer tibia (16.0 cm) than males (15.7 cm). Similarly, Richmond and Berg (1972) found no significant difference in length of humerus in male and female pigs. On the contrary, Richmond and Berg (1972) reported significantly longer femur and tibia in males than females.
female pigs weaned at 21 days and slaughtered at 68 kg. Essien and Fetuga (1988) also found significant difference in the lengths of femur, tibia and humerus between male and female pigs.

Table 3. Means and standard errors of mineral composition of tibia bone of pigs raised under intensive system, weaned at different ages and slaughtered at 70 kg body weight

<table>
<thead>
<tr>
<th>Variable</th>
<th>21 days</th>
<th>28 days</th>
<th>35 days</th>
<th>SEM</th>
<th>LSD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash %</td>
<td>46.8a</td>
<td>47.6a</td>
<td>52.3b</td>
<td>0.65</td>
<td>1.92</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Ca%</td>
<td>36.9a</td>
<td>37.2a</td>
<td>38.4b</td>
<td>0.36</td>
<td>1.06</td>
<td>0.03</td>
</tr>
<tr>
<td>P%</td>
<td>16.9a</td>
<td>18.3b</td>
<td>17.4ab</td>
<td>0.45</td>
<td>1.35</td>
<td>0.01</td>
</tr>
<tr>
<td>Mg%</td>
<td>0.54a</td>
<td>0.48a</td>
<td>0.44a</td>
<td>0.08</td>
<td>0.21</td>
<td>0.29</td>
</tr>
</tbody>
</table>

SEM = Standard error of means; LSD = Least Significant Difference; **Means within the same row having different letters differ significantly; P < 0.05**

Table 4. Means and standard errors of lengths, widths, weights and mineral content of bones of pigs weaned at 21 days of age, raised under intensive system and slaughtered at 70 kg body weight

<table>
<thead>
<tr>
<th>Variable</th>
<th>Male</th>
<th>Female</th>
<th>SEM</th>
<th>LSD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone length (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>17.0a</td>
<td>17.0a</td>
<td>0.18</td>
<td>0.67</td>
<td>0.88</td>
</tr>
<tr>
<td>Tibia</td>
<td>15.7a</td>
<td>16.0a</td>
<td>0.25</td>
<td>0.90</td>
<td>0.46</td>
</tr>
<tr>
<td>Humerus</td>
<td>15.9a</td>
<td>15.9a</td>
<td>0.28</td>
<td>1.01</td>
<td>0.97</td>
</tr>
<tr>
<td>Bone width (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>23.0a</td>
<td>23.1a</td>
<td>0.50</td>
<td>1.80</td>
<td>0.93</td>
</tr>
<tr>
<td>Tibia</td>
<td>21.6a</td>
<td>20.9a</td>
<td>0.59</td>
<td>2.15</td>
<td>0.42</td>
</tr>
<tr>
<td>Humerus</td>
<td>26.0a</td>
<td>25.7a</td>
<td>0.36</td>
<td>1.32</td>
<td>0.60</td>
</tr>
<tr>
<td>Bone fresh weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>226.4a</td>
<td>207.2a</td>
<td>3.89</td>
<td>14.14</td>
<td>0.02</td>
</tr>
<tr>
<td>Tibia</td>
<td>133.9a</td>
<td>130.2a</td>
<td>4.98</td>
<td>18.10</td>
<td>0.62</td>
</tr>
<tr>
<td>Humerus</td>
<td>199.5a</td>
<td>192.2a</td>
<td>3.77</td>
<td>13.72</td>
<td>0.23</td>
</tr>
<tr>
<td>Bone dry weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>128.3a</td>
<td>117.4a</td>
<td>2.71</td>
<td>9.84</td>
<td>0.04</td>
</tr>
<tr>
<td>Tibia</td>
<td>79.8a</td>
<td>74.0a</td>
<td>2.83</td>
<td>10.29</td>
<td>0.21</td>
</tr>
<tr>
<td>Humerus</td>
<td>117.7a</td>
<td>112.7a</td>
<td>0.87</td>
<td>3.17</td>
<td>0.01</td>
</tr>
<tr>
<td>Tibia mineral content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash %</td>
<td>46.6a</td>
<td>47.0a</td>
<td>0.64</td>
<td>2.34</td>
<td>0.66</td>
</tr>
<tr>
<td>Ca%</td>
<td>37.2a</td>
<td>36.6a</td>
<td>0.59</td>
<td>2.16</td>
<td>0.51</td>
</tr>
<tr>
<td>P%</td>
<td>16.3a</td>
<td>17.6a</td>
<td>0.61</td>
<td>2.23</td>
<td>0.21</td>
</tr>
<tr>
<td>Mg%</td>
<td>0.56a</td>
<td>0.52a</td>
<td>0.13</td>
<td>0.48</td>
<td>0.88</td>
</tr>
<tr>
<td>Slaughter age (days)</td>
<td>130.75a</td>
<td>130.75a</td>
<td>1.49</td>
<td>3.67</td>
<td>1.00</td>
</tr>
</tbody>
</table>

SEM = Standard error of means; LSD = Least Significant Difference; **Means within the same row having different letters differ significantly; P < 0.05**

Table 5. Means and standard errors of lengths, widths, weights and mineral content of bones of pigs weaned at 28 days of age, raised under intensive system and slaughtered at 70 kg body weight

<table>
<thead>
<tr>
<th>Variable</th>
<th>Male</th>
<th>Female</th>
<th>SEM</th>
<th>LSD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone length (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>17.1a</td>
<td>17.2a</td>
<td>0.27</td>
<td>0.98</td>
<td>0.86</td>
</tr>
<tr>
<td>Tibia</td>
<td>15.7a</td>
<td>15.9a</td>
<td>0.28</td>
<td>1.00</td>
<td>0.74</td>
</tr>
<tr>
<td>Humerus</td>
<td>14.9a</td>
<td>15.4a</td>
<td>0.28</td>
<td>0.99</td>
<td>0.36</td>
</tr>
<tr>
<td>Bone width (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>22.6a</td>
<td>23.4a</td>
<td>0.68</td>
<td>2.42</td>
<td>0.67</td>
</tr>
<tr>
<td>Tibia</td>
<td>20.2a</td>
<td>22.0a</td>
<td>0.96</td>
<td>3.41</td>
<td>0.26</td>
</tr>
<tr>
<td>Humerus</td>
<td>25.1a</td>
<td>26.0a</td>
<td>0.50</td>
<td>1.77</td>
<td>0.23</td>
</tr>
<tr>
<td>Bone fresh weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>236.2a</td>
<td>241.9a</td>
<td>10.86</td>
<td>38.73</td>
<td>0.88</td>
</tr>
<tr>
<td>Tibia</td>
<td>141.7a</td>
<td>149.9a</td>
<td>8.39</td>
<td>29.94</td>
<td>0.61</td>
</tr>
<tr>
<td>Humerus</td>
<td>207.3a</td>
<td>216.1a</td>
<td>8.69</td>
<td>31.00</td>
<td>0.61</td>
</tr>
<tr>
<td>Bone dry weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>144.7a</td>
<td>140.2a</td>
<td>7.90</td>
<td>28.17</td>
<td>0.39</td>
</tr>
<tr>
<td>Tibia</td>
<td>89.4a</td>
<td>88.5a</td>
<td>5.51</td>
<td>19.67</td>
<td>0.75</td>
</tr>
<tr>
<td>Humerus</td>
<td>129.3a</td>
<td>125.9a</td>
<td>6.10</td>
<td>21.77</td>
<td>0.50</td>
</tr>
<tr>
<td>Tibia mineral content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash %</td>
<td>48.4a</td>
<td>46.7a</td>
<td>0.63</td>
<td>2.23</td>
<td>0.11</td>
</tr>
<tr>
<td>Ca%</td>
<td>37.8a</td>
<td>36.7a</td>
<td>0.51</td>
<td>1.81</td>
<td>0.19</td>
</tr>
<tr>
<td>P%</td>
<td>18.1a</td>
<td>18.5a</td>
<td>0.66</td>
<td>2.34</td>
<td>0.61</td>
</tr>
<tr>
<td>Mg%</td>
<td>0.44a</td>
<td>0.52a</td>
<td>0.13</td>
<td>0.45</td>
<td>0.76</td>
</tr>
<tr>
<td>Slaughter age (days)</td>
<td>133.75a</td>
<td>135.50a</td>
<td>1.92</td>
<td>3.83</td>
<td>0.52</td>
</tr>
</tbody>
</table>

SEM = Standard error of means; LSD = Least Significant Difference; **Means within the same row having different letters differ significantly; P < 0.05**
Table 6. Means and standard errors of lengths, widths, weights and mineral content of bones of pigs weaned at 35 days of age, raised under intensive system and slaughtered at 70 kg body weight

<table>
<thead>
<tr>
<th>Variable</th>
<th>Male</th>
<th>Female</th>
<th>SEM</th>
<th>LSD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone length (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>17.1±</td>
<td>17.8±</td>
<td>0.32</td>
<td>1.03</td>
<td>0.32</td>
</tr>
<tr>
<td>Tibia</td>
<td>15.8±</td>
<td>16.2±</td>
<td>0.35</td>
<td>1.14</td>
<td>0.34</td>
</tr>
<tr>
<td>Humerus</td>
<td>15.6±</td>
<td>15.6±</td>
<td>0.25</td>
<td>0.79</td>
<td>0.80</td>
</tr>
<tr>
<td>Bone width (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>23.2±</td>
<td>22.9±</td>
<td>0.42</td>
<td>1.36</td>
<td>0.34</td>
</tr>
<tr>
<td>Tibia</td>
<td>20.0±</td>
<td>21.6±</td>
<td>0.48</td>
<td>1.54</td>
<td>0.06</td>
</tr>
<tr>
<td>Humerus</td>
<td>25.3±</td>
<td>27.1±</td>
<td>0.66</td>
<td>2.12</td>
<td>0.09</td>
</tr>
<tr>
<td>Bone fresh weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>216.5±</td>
<td>231.1±</td>
<td>8.74</td>
<td>28.10</td>
<td>0.34</td>
</tr>
<tr>
<td>Tibia</td>
<td>129.9±</td>
<td>136.0±</td>
<td>4.40</td>
<td>14.15</td>
<td>0.51</td>
</tr>
<tr>
<td>Humerus</td>
<td>195.3±</td>
<td>213.1±</td>
<td>10.11</td>
<td>32.51</td>
<td>0.26</td>
</tr>
<tr>
<td>Bone dry weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>124.7±</td>
<td>132.7±</td>
<td>5.53</td>
<td>17.80</td>
<td>0.62</td>
</tr>
<tr>
<td>Tibia</td>
<td>77.1±</td>
<td>83.7±</td>
<td>2.38</td>
<td>7.65</td>
<td>0.35</td>
</tr>
<tr>
<td>Humerus</td>
<td>113.8±</td>
<td>123.5±</td>
<td>5.85</td>
<td>18.81</td>
<td>0.39</td>
</tr>
<tr>
<td>Tibia mineral content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash %</td>
<td>51.7±</td>
<td>52.9±</td>
<td>1.42</td>
<td>4.55</td>
<td>0.52</td>
</tr>
<tr>
<td>Ca%</td>
<td>38.2±</td>
<td>38.5±</td>
<td>0.51</td>
<td>1.66</td>
<td>0.43</td>
</tr>
<tr>
<td>P%</td>
<td>17.3±</td>
<td>17.4±</td>
<td>0.85</td>
<td>2.72</td>
<td>0.78</td>
</tr>
<tr>
<td>Mg%</td>
<td>0.43±</td>
<td>0.44±</td>
<td>0.14</td>
<td>0.46</td>
<td>0.81</td>
</tr>
<tr>
<td>Slaughter age (days)</td>
<td>133.0±</td>
<td>141.0±</td>
<td>3.10</td>
<td>2.87</td>
<td>0.18</td>
</tr>
</tbody>
</table>

SEM = Standard error of means, LSD = Least Significant Difference; ** Means within the same row having different letters differ significantly; P < 0.05

Bone width

Sex had no significant (P>0.05) effect on bone width of pigs weaned at 21, 28 and 35 days of age (Tables 4 to 6). These results agree with Wiseman (2006) who found that femur thickness was not significantly affected by sex. However, in the current study, males tended to have wider tibia (21.6 mm) than females (20.9 mm) for pigs weaned at 21 days. Similarly, males tended to have wider humerus (26.0 mm) than females (25.7 mm) but narrower femurs (23.0 mm) than females (23.1 mm). Dikić et al. (2007) found the diameter of humeri and femurs to be 27.7 mm and 25.6 mm respectively for Swedish Landrace pigs. In the current study, females that were weaned at 28 days tended to have wider femur, tibia and humerus than males. In addition, female pigs that were weaned at 35 days of age tended to have wider tibia and humerus than males (Table 6).

Bone weight

Fresh weight: Sex had significant effect (P<0.05) on fresh weight of femur from pigs weaned at 21 days of age (Table 4). Females had significantly heavier femur (226.4 g) compared to males (207.2 g). However, tibia and humerus fresh weight of pigs weaned at 21 days was not affected by sex. The current results on tibia and humerus fresh weight disagree with Essien and Fetuga (1988) who reported significant difference in the weights of tibia and humerus between male and female pigs. The present results on tibia and humerus are partially consistent with Richmond et al. (1972) who reported no significant influence of sex on fresh weight of femur, humerus and tibia of pigs weaned at 21 days and slaughtered at 68 kg. In the current study, sex had no significant influence on fresh weight of bones of pigs weaned at 28 and 35 days of age although females tended to have heavier bones than males. This variation in bone weights could be due to the differences in stage of skeletal maturity between the pigs at time of slaughter (Richmond et al., 1979).

Dry weight: Sex had significant (P<0.05) effect on dry weight of femur and humerus for pigs weaned at 21 days of age (Table 4). Males had significantly heavier femur (128.3 g) and humerus (117.7 g) compared to females. The current results agree with Richmond et al. (1979) who found significant difference in the weights of individual bones of male and female pigs. However, bone dry weight in the present study was not influenced by sex in pigs weaned at 28 and 35 days of age. However, males from pigs weaned at 28 days tended to have heavier dry bones while females from pigs weaned at 35 days of age tended to have heavier dry bones (Tables 5 to 6).

Bone mineral content

Sex did not significantly affect tibia mineral content at 21, 28 and 35 days weaning ages (Tables 4 to 6). However, males tended to have higher Ca and Mg contents than females for pigs weaned at 21 days. Females weaned at 28 days tended to have higher P and Mg contents while males tended to have lower content of ash, Ca, P and Mg (Tables 3 and 4). These results disagree with Bollen et al. (2006) who found that bone Ca, P, and Mg were significantly different between sexes, with females expressing higher values than males.
Slaughter age

Sex did not significantly (P >0.05) influence slaughter age (Tables 4 to 6). However, females took more days to reach slaughter weight (70 kg) compared to males. These findings disagree with Serrano et al. (2009) who found females to be superior in growth performance to their castrated male counterparts. Latorre et al. (2003), Morales et al. (2011) and Piao et al. (2004) argued that males consume more feed and hence grow faster than their female counterparts.

CONCLUSION

Weaning age and sex did not affect bone length, width, weight and mineral composition of pigs raised under intensive system. Piglets can be weaned at 21, 28 or 35 days of age under intensive system without negatively affecting bone development. Twenty one days weaning age is recommended as pigs weaned at this age reach slaughter weight earlier than other weaning ages.

ACKNOWLEDGEMENTS

The authors would like to thank Botswana government for the financial assistance and management of Chemae farm for providing the facilities to carry out trials. We also thank the University of Botswana, Ministry of Agriculture (Botswana) and Botswana National Food Research and Technology Centre for their assistance in analyzing samples and data.

REFERENCES

King G (2013). Considerations at weaning time. Available online at http://www.aps.uoguelph.ca/~gking/Ag_2350/wean.htm

GROWTH, HAEMATOLOGICAL AND SERUM BIOCHEMICAL INDICES OF BROILER CHICKENS FED BANANA PEEL MEAL AS REPLACEMENT FOR MAIZE IN THE SEMI-ARID ZONE OF NIGERIA

H. DUWA*, B. SALEH, M. LAMIDO and A. SAIDU

Department of Animal Science, Faculty of Agriculture, University of Maiduguri, P.M.B. 1069, Borno State. Nigeria.

*Email: hduwa66@gmail.com

ABSTRACT: An experiment was conducted to investigate the replacement of maize with banana peel meal in broiler diets. One hundred and twenty (120) Anak 2000 broiler chicken were used for the study. Four diets were formulated using banana peel meal at 0%, 5%, 10%, and 15% levels in the respected diets. The birds were randomly allotted to dietary treatments in a completely randomized design. Each treatment consists of thirty birds with ten birds per replicate. The experiment lasted for eight weeks; feed and water were given ad libitum. The productive performance results indicated high significant (P<0.05) difference in final weight, daily weight gain and feed conversion ratio among the treatment group at different levels of replacement. Haematological indices and serum biochemical indices also followed similar pattern as the productive performance by revealing high significant (P<0.05) difference at different levels of maize replacement with banana peel meal in Packed cell volume (PCV), Red blood cell (RBC), Haemoglobin (Hb), White blood cell (WBC), Mean corpuscular volume (MCV), Mean corpuscular Haemoglobin (MCH), Haemoglobin concentration (Hb), Heterophils and Lymphocytes. The serum biochemical indices revealed high significant (P<0.05) difference in total protein, albumen, glucose, total bilirubin, potassium, sodium and chloride. In view of the above, up to 15% replacement of maize with banana peel meal has no adverse effect on performance and blood components of broiler chickens with concomitant reduction in feed cost ₦/kg and feed cost per kg gain.

Keywords: Broiler Chicken, Banana Peel, Maize, Growth and Blood Components

INTRODUCTION

Nigeria like many other developing countries is currently faced with the shortage and high cost of conventional feed for poultry. Payne (1990) observed that the increasing worldwide need for energy and protein sources for ration formulation for poultry may in the long run delay or even halt the complete industrialization of the poultry industry. It is in light of this that efforts are geared towards investigation into the utilization of some cheap and readily available alternative sources of some energy and protein feed stuffs for monogastric animals. This has been the main focus of animal nutritionist in the country. The search was precipitated by high cost of most conventional feedstuffs which have always been in high demand by humans.

The poultry industry fall short of its own aim of self-sufficiency in animal protein consumption in the country that is 5 g/caput per day which is below recommended level of 35 g/caput per day (FAO, 2010). Constraints which include low level of income, poor management, high mortality rate and poor chicks quality is still believed to be responsible for the shortfall in production (Adesimi and Awoyomi, 1989; Aihonsu and Sunmola, 1999; Alimi, 2001 and Geidam et al., 2006). However, the biggest impediment to livestock production in developing countries is high cost of feed ingredient (El-Deek et al., 2009). In Poultry enterprise feed cost represents 65 – 75% of its production cost (Kekeocha, 1984).

Banana peels are outer covers of banana fruit and by-product of household consumption and banana processing factories. The proportion which is wasted as peel is 18 -20% (Dividich et al., 1976). The peel contains 0.9% crude protein, 1.7% crude fat, 59.0% carbohydrate and 31.70% crude fibre, and if properly processed, it could be a high quality and cheap source of carbohydrate and minerals for livestock (Ahwange, 2008). Tartrakoon et al. (1999) also reported that the peel has high energy content but low in protein. However, anti-nutritional factors such as hydro-cyanide, oxalate, phytate and saponins have been reported in banana peels by Ahwange (2008) which affect their utilization in poultry. This experiment was carried out to investigate the effect of replacing maize with graded levels of banana peel meal on the growth, haematological and serum biochemical indices of broiler chickens.
MATERIAL AND METHODS

Experimental Stock and Management
One hundred and twenty day old mixed sex Anak 2000 broiler chicks were brooded for seven days. At one week of age, the chicks were randomly assigned to four dietary treatments of 30 birds with 10 birds per replicate in a completely randomized design. Each group was given one of the experimental diets and clean drinking water was given ad libitum throughout the 8 weeks experimental period. The birds were vaccinated against the common poultry diseases in the area. Gomboru vaccine at 2 and 5 weeks of age and Newcastle vaccine (Lasota) at 3 weeks of age.

Experimental diet
The banana peels were sourced locally within Maiduguri metropolis. They were cleaned, sun dried, milled and incorporated into the experimental diets. Four experimental diets (starter and finisher mashes) were formulated (Tables 1 and 2) to contain 0% (control), 5%, 10%, and 15% levels of banana peel meal as a replacement for maize in the semi-arid zone of Nigeria.

Table 1 - Composition of the Experimental Broiler Starter Diets

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Levels of inclusion of the banana peel meal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1 (control)</td>
</tr>
<tr>
<td>Maize</td>
<td>35.36</td>
</tr>
<tr>
<td>Banana peel meal</td>
<td>0.00</td>
</tr>
<tr>
<td>Wheat Offal</td>
<td>8.84</td>
</tr>
<tr>
<td>Full Fat Soybean</td>
<td>51.89</td>
</tr>
<tr>
<td>Bone Meal</td>
<td>3.0</td>
</tr>
<tr>
<td>Limestone</td>
<td>0.10</td>
</tr>
<tr>
<td>Salt</td>
<td>0.35</td>
</tr>
<tr>
<td>Methionine</td>
<td>0.20</td>
</tr>
<tr>
<td>Premix*</td>
<td>0.25</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

*Bio-mix starter supplied/kg: Vit.A=1000IU, Vit.D3=1500IU, Vit.E=1000mg, Vit.K3=2000mg, Vit.B1=1500mg, Vit.B2=1600mg, Niacin=4000mg, Panthothenic Acid=5000mg, Vit.B6=3000mg, Vit.B12=15mg, Folic Acid=10mg, Biotin H2=60mg, Choline chloride=30000mg, Cobalt=200mg, Copper=3000mg, Iodine=1000mg, Iron=20000mg, Manganese=40000mg, Zinc=30000mg, Selenium=200mg, Anti-oxidant=1250mg.

Table 2 - Composition of the Experimental Broiler Finisher Diets

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Levels of inclusion of the banana peel meal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1 (control)</td>
</tr>
<tr>
<td>Maize</td>
<td>48.90</td>
</tr>
<tr>
<td>Banana peel meal</td>
<td>31.73</td>
</tr>
<tr>
<td>Wheat Offal</td>
<td>3.41</td>
</tr>
<tr>
<td>Full Fat Soybean</td>
<td>11.21</td>
</tr>
<tr>
<td>Bone Meal</td>
<td>3.90</td>
</tr>
<tr>
<td>Lithostone</td>
<td>24.02</td>
</tr>
<tr>
<td>Salt</td>
<td>11.61</td>
</tr>
<tr>
<td>Methionine</td>
<td>0.10</td>
</tr>
<tr>
<td>Premix*</td>
<td>0.20</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

*Bio-mix starter supplied/kg: Vit.A=8500IU, Vit.D3=2000IU, Vit.E=23000mg, Vit.K3=1800mg, Vit.B1=1800mg, Vit.B2=5500mg, Niacin=27500mg, Panthothenic Acid=3500mg, Vit.B6=3000mg, Vit.B12=15mg, Folic Acid=750mg, Biotin H2=60mg, Choline chloride=30000mg, Cobalt=200mg, Copper=3000mg, Iodine=1000mg, Iron=20000mg, Manganese=40000mg, Zinc=30000mg, Selenium=200mg, Anti-oxidant=1250mg.
Data Collection

Performance parameters: Individual body weight of the birds was obtained to the nearest 0.1 g on the first day of the study and weekly thereafter. Feed intake was measured on daily basis while feed conversion ratio was calculated as the ratio of the feed intake to the body weight gain.

Blood collection and analysis: At the end of week eight, blood samples were collected from three birds in each group (i.e. 1 bird per replicate) for determination of haematological and serum biochemical indices. The birds were fasted overnight and blood samples was collected early the next morning via the wing-vein by means of sterile disposable (21-gauge) syringe and needle, and then placed into sets of sample bottles. One set contained diapotassium salts of ethylene diamine tetra-acetic acid (EDTA) and the samples were used for haematological study; the other samples in anticoagulant-free bottles were used for the determination of serum biochemical indices. Packed cell volumes (PCV), red blood cell (RBC), white blood cell (WBC) and haemoglobin concentration (Hb) were analyzed according to the methods outlined by Bush (1975). Mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) were calculated by the formula of Schalm et al. (1985). The serum biochemical indices measured were the level of total protein, albumin, glucose, cholesterol, chloride, sodium, potassium, creatinine, total bilirubin, and urea were analyzed according to the methods outlined by Bush (1975) and WHO (1980). Proximate composition of the experimental diets was carried out according to the methods of AOAC (1980).

Statistical Analysis

All data collected were subjected to analysis of variance using Statistix (2003) and where means differed, they were separated using the least significant difference (LSD).

RESULTS AND DISCUSSION

The crude protein values for the broiler starter and finisher are within the range of 22 – 24% and 19 – 20% reported by Olomu (1995), Kekeocha (1984) and Williamson and Payne (1978), who also stated that maximum weight gain in broiler chickens was not only a function of the birds good management and housing, but also a function of the feed given to the chickens.

The ether extract (EE) values reported in this study were lower than the values of (22.30%) reported by Samy (1999) for plant protein sources. And the ash was within the reported values by NIS (1989). The range of values (4.60 – 5.06%) obtained in this study was adequate to provide the necessary mineral such as calcium and phosphorus needed for development of bones. The energy values were slightly higher than the values of 2800 Kcal/kg and 3000 Kcal/kg recommended by Olomu (1995) for the starter and finisher respectively which may be as a result of banana peel meal carbohydrate content (59.00%) reported by Ahwange (2008).

The productive performances of broiler chickens fed varying levels of banana peel meal are presented in Table 3. The final body weight revealed significant (P<0.05) difference among the treatment group in the (control), but the range obtained in this research is lower than the value 2495 g/bird reported by Olomu (1995). The significantly (P<0.05) lower body weight obtained in the birds fed 15% banana peel meal, may be related to the poor feed conversion ratio (FCR) of the birds as the banana peel meal inclusion level increased in the diets. This observation concurs with the work of Tewe (1983) who reported that broiler chickens fed banana peel meal beyond 7.5% level showed significant (P<0.05) reduction in body weight gain. Same author also reported that broiler chickens fed 30% banana peel meal gained the least weight and have the poorest feed conversion ratio. Similarly, Gohl (1982) reported that level of banana peel meal above 10% is detrimental to growth and feed efficiency of broiler chicken.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>T1 (control)</th>
<th>T2 (5%)</th>
<th>T3 (10%)</th>
<th>T4 (15%)</th>
<th>SEM ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Weight (g/bird)</td>
<td>66.40</td>
<td>66.66</td>
<td>66.55</td>
<td>66.51</td>
<td>11.710</td>
</tr>
<tr>
<td>Final Weight (g/bird)</td>
<td>1548.00a</td>
<td>1154.40b</td>
<td>1190.00b</td>
<td>981.70c</td>
<td>33.222c</td>
</tr>
<tr>
<td>Daily Feed Intake (g/bird)</td>
<td>82.99</td>
<td>80.90</td>
<td>80.56</td>
<td>80.77</td>
<td>0.667</td>
</tr>
<tr>
<td>Daily Weight Gain (g/bird)</td>
<td>41.78a</td>
<td>33.45ab</td>
<td>41.60a</td>
<td>25.67c</td>
<td>0.595c</td>
</tr>
<tr>
<td>Feed Conversion Ratio</td>
<td>1.99a</td>
<td>2.42b</td>
<td>1.94a</td>
<td>3.15c</td>
<td>0.210c</td>
</tr>
<tr>
<td>Mortality (%)</td>
<td>16.67</td>
<td>15.00</td>
<td>13.33</td>
<td>33.33</td>
<td>NA</td>
</tr>
<tr>
<td>Feed Cost /kg</td>
<td>87.01</td>
<td>85.30</td>
<td>83.64</td>
<td>81.89</td>
<td>NA</td>
</tr>
<tr>
<td>Feed Cost / kg gain</td>
<td>99.36</td>
<td>89.84</td>
<td>85.06</td>
<td>69.36</td>
<td>NA</td>
</tr>
</tbody>
</table>

* a, b, c Means within the same row bearing different superscripts differ significantly (P<0.05); * = significant (P<0.05); NA = Not Statistically Analyzed; SEM = standard error of mean

The feed intake indicated no significant (P>0.05) difference among the treatment group. This observation tallies with the report of Tewe (1983) who reported that as the banana peel meal levels increases in the diet of broiler chicken, there was reduction in growth, feed intake and feed efficiency. The result of this study also did not

tally with the values of up to 160 g/bird/day feed intake reported by Olomu (1995). This may be attributed to the anti-nutritional factor (Tannins) in banana peel which may affect its utilization by poultry (Ahwange, 2008) and Kumar (1991). Though the tannins content was not analysed in this study, but it was reported by Bressani et al. (1982) and Jansman (1993) that unconventional plant feed sources contained tannins which is build up for resistance of pest.

The daily weight gain indicated high significant (P<0.05) difference in the control group and 10% replacement of maize with banana peel meal, the finding is similar to the report of Calvent (1978) and Hunter (1981) who observed that high fibre feed in the diets of animal depressed growth. The significant (P<0.05) difference obtained in the daily weight gain among the replacement levels could be attributed to levels of the limiting amino acids in soyaabean meal. These levels were adequate to meet the amino acid need of the birds. The methionine level in all the diets probably improved the biological value of the feeds (Abasiekong and Tyokpat, 2000).

The feed conversion ratio showed high significant (P<0.05) difference among the treatment group in the control (0%) and 10% levels of replacement with similar pattern to final body weight and daily weight gain. The result of the feed conversion ratio in this study is contrary to the report of Tewe (1983) who reported that banana peel meal beyond 7.5% indicated poor feed conversion efficiency. Similarly Dividich et al. (1976) reported 31.70% crude fibre content for banana peel, but if processed properly, they could be a high quality and cheap source of carbohydrate and mineral for livestock. The significantly (P<0.05) lower feed conversion ratio indicated in 15% replacement of maize with banana peel meal may be as a result of high crude fibre in the banana peel meal and anti-nutritional factors such as hydrocyanide, phytate and saponin which were not affected by processing as reported by Dividich et al. (1976) and tannin by Ahwange (2008).

The mortality record was high at 15% replacement of maize with banana peel meal compared to the (control) group. Post – mortem result showed no evidence of any disease. The chickens’ death may be attributed to anti-nutritional factors in banana peel as reported by Ahwange (2008), and heat prostration as a result of high ambient temperature (40 - 43°C) during the study period. Similarly, Compose et al. (1981) observed that mortality rate was high when temperature was changed from 18.3 to 37.8°C.

The feed cost $/kg and feed cost/kg gain was not statistically analyzed but it was observed that there was reduction in the feed cost $/kg and feed cost/kg gain, as the level of banana peel meal increased in the diets. This observation agreed with the report of Apata and Ojo (2000) that the high cost of feed was largely due to the exorbitant price and scarcity of conventional ingredient and that this could be lowered by using non-conventional feed ingredients.

The haematological parameters (Table 4) showed significant (P<0.05) difference in all the blood components at different inclusion levels of the banana peel meals except in monocytes, eosinophils and basophils. The PCV values are similar to the range of 30 – 33% reported by Swenson (1970) which indicated that the birds were neither dehydrated nor anaemic. The RBC, WBC, and Hb values obtained in this study were within the range of 2.5 – 3.2 x 10\(^6\)/mm\(^3\), 9 – 31 x 10\(^3\)/mm\(^3\) and 6.5 – 9 g/dl reported by Swenson (1970) and CCAC (1980). The MCV, MCH and MCHC range of values observed were within the values reported by Swenson (1970). The herophils and lymphocytes values were within the normal range of 25 – 30% and 55 – 60% reported by Swenson (1977). It has been observed by Esonu et al. (2001) that hematological constituents reflect the responsiveness of the animal to its internal and external environments which include feed and feeding.

The monocytes, eosinophils and basophils showed no significant (P>0.05) difference among the treatment group, but the range of values observed were similar to the range of values reported by Swenson (1977). This is an indication of adequate production of anti-bodies and no bacterial infection or allergic condition among the bird as observed in this study. The observation concurs with the report of Dukes (1975) and CCAC (1980).

Table 4 - Haematological Parameters of Broiler Chicken fed Graded Levels of Banana peel Meal (BPM)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>T1 (control)</th>
<th>T2 (5%)</th>
<th>T3 (10%)</th>
<th>T4 (15%)</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packed cell volume (%)</td>
<td>30.69</td>
<td>27.67</td>
<td>24.67</td>
<td>30.00</td>
<td>1.472*</td>
</tr>
<tr>
<td>Heamoglobin (g/l)</td>
<td>8.10</td>
<td>7.10</td>
<td>5.70</td>
<td>7.60</td>
<td>0.449*</td>
</tr>
<tr>
<td>Red blood cells (10(^6)/mm(^3))</td>
<td>3.17</td>
<td>2.75</td>
<td>2.13</td>
<td>3.06</td>
<td>0.172*</td>
</tr>
<tr>
<td>White blood cells (10(^3)/mm(^3))</td>
<td>18.50</td>
<td>17.33</td>
<td>16.83</td>
<td>18.00</td>
<td>0.527*</td>
</tr>
<tr>
<td>Mean corpuscular volume (fl)</td>
<td>96.67</td>
<td>100.83</td>
<td>115.27</td>
<td>97.90</td>
<td>1.820*</td>
</tr>
<tr>
<td>Mean corpuscular haemoglobin (pg)</td>
<td>25.70</td>
<td>25.80</td>
<td>26.80</td>
<td>24.77</td>
<td>0.804*</td>
</tr>
<tr>
<td>Mean haemoglobin conc. (g/dl)</td>
<td>26.37</td>
<td>25.60</td>
<td>23.27</td>
<td>25.30</td>
<td>0.744*</td>
</tr>
<tr>
<td>Heterophils (%)</td>
<td>28.33</td>
<td>25.67</td>
<td>38.33</td>
<td>34.00</td>
<td>0.913*</td>
</tr>
<tr>
<td>Lymphocytes (%)</td>
<td>63.00</td>
<td>66.67</td>
<td>544.67</td>
<td>58.00</td>
<td>1.616*</td>
</tr>
<tr>
<td>Monocytes (%)</td>
<td>4.33</td>
<td>3.33</td>
<td>3.00</td>
<td>4.67</td>
<td>1.155NS</td>
</tr>
<tr>
<td>Eosinophils (%)</td>
<td>4.33</td>
<td>4.33</td>
<td>3.67</td>
<td>3.33</td>
<td>0.745NS</td>
</tr>
<tr>
<td>Basophils (%)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
<td>0.00</td>
<td>0.236NS</td>
</tr>
</tbody>
</table>

* a,b,c Means within the same row bearing different superscripts differ significantly (P<0.05); * = significant (P<0.05); NA = Not Statistically Analyzed; SEM = standard error of mean.
The serum biochemical indices observed in (Table 5) were all within normal ranges reported by Dukes (1975) and Swenson (1970) for broiler chickens. The biochemical indices were not adversely affected by including 15% banana peel meals in broiler diets.

Table 5 - Serum Biochemical Indices of Broiler Chickens fed Graded Levels of Banana Peel Meal (BPM)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>T1 (control)</th>
<th>T2 (5%)</th>
<th>T3 (10%)</th>
<th>T4 (15%)</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total protein (g/l)</td>
<td>12.00</td>
<td>8.00^b</td>
<td>9.50^ab</td>
<td>8.67^ab</td>
<td>1.548*</td>
</tr>
<tr>
<td>Albumin (g/l)</td>
<td>10.33^a</td>
<td>7.00^b</td>
<td>8.50^b</td>
<td>7.67^b</td>
<td>1.569*</td>
</tr>
<tr>
<td>Glucose (mmol/l)</td>
<td>7.70^a</td>
<td>9.00^a</td>
<td>9.15^a</td>
<td>8.67^b</td>
<td>0.149*</td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td>1.37</td>
<td>0.90</td>
<td>1.00</td>
<td>1.13</td>
<td>0.217NS</td>
</tr>
<tr>
<td>Urea (mmol/l)</td>
<td>2.67</td>
<td>2.67</td>
<td>2.95</td>
<td>2.70</td>
<td>0.144NS</td>
</tr>
<tr>
<td>Total bilirubin (µmol/l)</td>
<td>9.33^a</td>
<td>8.67^ab</td>
<td>8.00^ab</td>
<td>6.67^b</td>
<td>3.324*</td>
</tr>
<tr>
<td>Potassium (mmol/l)</td>
<td>2.83^b</td>
<td>3.00^b</td>
<td>4.25^a</td>
<td>3.00^b</td>
<td>0.334*</td>
</tr>
<tr>
<td>Sodium (mmol/l)</td>
<td>108.67^ab</td>
<td>110.00^ab</td>
<td>123.00^a</td>
<td>104.00^b</td>
<td>6.449*</td>
</tr>
<tr>
<td>Chloride (mmol/l)</td>
<td>91.33^d</td>
<td>95.33^c</td>
<td>103.00^a</td>
<td>99.33^b</td>
<td>5.033*</td>
</tr>
</tbody>
</table>

a, b, c, d Means within the same row bearing different superscripts differ significantly (P<0.05); * = significant (P<0.05); NA = Not Statistically Analyzed; SEM = standard error of mean

CONCLUSION
It was concluded that maize can be replaced by up to 10% banana peel meal without any adverse effects on the growth and health of broiler chickens.

REFERENCES

INFLUENCE OF PRE-TREATMENT METHODS AND LEVELS OF INCLUSION OF CASSAVA PEEL /BLOOD MEAL MIXTURES ON NUTRIENT UTILIZATION AND RELATIVE ORGAN WEIGHTS OF RABBIT DOES

O.O. OJEBIYI1,‡, I.O. OLABUNJOYE2, G.O FARINU3, A.M. OLOTA1

1Department of Animal Nutrition and Biotechnology, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
2Department of Animal Production and Health, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria

*Email: segunojebiyi@gmail.com

ABSTRACT: A 12 weeks feeding trial was conducted to investigate the effects of pre-treatment methods and levels of inclusion of cassava peel/blood meal mixtures (3:2) on nutrient digestibility and relative organ weights of rabbits does. Ten diets were formulated with diet 1 serving as the control without cassava peel/blood meal mixture. Diets 2, 5 and 8 had 10% cassava peel+blood meal mixture, Diets 3, 6 and 9 had 20% cassava peel+blood meal mixture while Diets 4, 7 and 10 had 30% cassava peel+blood meal mixture. For diets 2, 3 and 4 cassava peels were ash-treated (ATD/BM), for diets 5, 6 and 7 the cassava peels were parboiled (PAB/BM) and for diets 8, 9 and 10 the cassava peels were sun dried (SUD/BM). The rabbits were divided into 10 treatment groups of six rabbits each and assigned randomly to the ten diets. Each rabbit served as a replicate in a randomized complete block design experiment in a factorial arrangement. The digestibility of nutrients was affected (P<0.05) by pre-treatment methods as well as levels of inclusion levels. Although the digestibility of the various nutrients differs (P<0.05) and did not follow a specific pattern, both the pre-treatment methods as well the levels of inclusion did not affect (P>0.05) the final Live weight of the rabbits. Pre-treatment methods as well as the level of inclusion affected (P<0.05) the relative organ weights of the spleen and kidney. From the results these non-conventional feed ingredients can be included in growing rabbit diet up to 30% level since performance especially final live weights were not affected.

Keywords: Pre-treatment, Cassava Peels, Rabbit, Digestibility, Organ Weights

INTRODUCTION

Livestock plays an integral role in the livelihood of poor farmers by providing economic, social food security (FAO, 2011) It is one of the fastest growing agricultural subsectors in the developing countries, but there is considerable shortage of feed availability in most of these developing countries (Wadhwa and Bakshi, 2013). In an attempt to solve the challenging animal protein inadequacy in Nigeria, series of livestock development drive have been embarked on by the government. Two major identified areas of focus are the production of animals that are fast growing and reduction of the production cost to make the meat and other animal products available and affordable. The potentials of rabbit in combating the animal protein inadequacy had earlier been highlighted by Ojebiyi et al., 2006. Daudu et al. (2009) reported that non-conventional feedstuff (NCF) offer the best alternative for the reduction of feed cost which will ultimately lead to reduction in the price of meat and other animal products. However for these NCFs to play these roles they must be available all year round and easy to procure and processed if need be. Cassava peel is among other by-products that are readily available in Nigeria and have no direct dietary value in human diets. This is because during cassava processing into human food, the peels which accounts for between 10-13 % of the tuber weight is often left to rot away at various processing sites. The peel is characterized by high fibre, low protein and high hydrogen cyanide content (an anti-nutritional factor) and requires some form of processing to appreciably reduce the cyanide content to acceptable or tolerant level thus improving the utilization. Tewe (1991), suggested that the processing techniques to be used for reduction of cyanide must consider the labour costs and the effect of the processing on the nutrient profile. Blood meal is one of the waste products from abattoir in Nigeria. Although it is rich in crude protein and most amino acids particularly lysine, it is low in isoleucine and poor in calcium and phosphorus (Rahjhan, 2001) and when processed could be appreciably incorporated to animal feed. According to Daudu et al. (2009), the best way in assessing the suitability of a feed ingredient for rabbit nutrition is to include graded levels in the diet and ensuring that all nutrients required by the animal are supplied while performance is measured to know the optimum inclusion level.
The present study is aimed at evaluating the effect of different pre-treatment methods and levels of inclusion of peel/blood meal mixtures on nutrient digestibility and relative organ weights of rabbit does.

MATERIAL AND METHODS

The experiment was carried out at the Rabbitary Unit of the Teaching and Research Farm, Ladoke Akintola University of Technology, Ogbomoso Oyo State Nigeria. Ogbomoso is in the derived savannah zone of Nigeria.

Test ingredients:

The cassava peels used in this study were processed in three ways: these are ash treatment, parboiling and sun drying. The collection and processing is as described by Ojebiyi et al. (2008).

Formulation of Experimental diets:

Cassava peel-blood meal mixtures was prepared by combining each of the ash treated, parboiled and sundried cassava peels and blood meal in ratio 3:2. Ten diets were formulated, diet one which served as the control contained no cassava peel+blood meal mixture; diets 2, 3 and 4 contained either 10, 20 or 30% ash treated cassava peel+blood meal; diets 5, 6, and 7 contained either 10, 20 or 30% parboiled cassava peel+blood meal mixture while diets 8, 9 and 10 contained either 10, 20 or 30% sun dried cassava peel+blood meal mixture. The composition of the diet is shown in Table 1.

Experimental Animals and Management:

A total of 60-cross bred (New Zealand white × Chinchilla) female weaned rabbits of 5-7 weeks of age with mean weight of between 609.90 - 612.710 g were used for the study. They were divided into 10 treatment groups of 6 rabbits each with each rabbit serving as a replicate in a completely randomized block design experiment in a factorial arrangement. The rabbits were housed individually in wood-wire cages with dimensions of 44×34×44cm. The drinking and feeding troughs were earthen pot re-enforced with cement to prevent tipping off. A total of 100g feed divided into two rations of 50g in the morning (8:00hr) and 50g in the evening (16:00hr) were supplied to each rabbit per day. The cages were designed in such a way that allows easy collection of faeces, urine and left over feeds to avoid buildup of odour and pathogens. At the commencement of the experiment the rabbits were weight-balanced such that the difference in weight between treatments was less than ± 3.00g.

Data collection

Feed intake: Weighed quantity of feed was given to each animal and the left over was collected daily and weighed to evaluate the feed intake of each animal.

Digestibility trial: During the 12th week, daily faecal output was collected from each animal for 5 days, sun-dried, weighed and stored in plastic bags. The sample was bulked together ground and sub sample taken for proximate analysis.

Carcass and organ weights: At the end of the experiment the rabbits were tagged and starved for 12 hours before being slaughtered. After bleeding the rabbits were eviscerated to remove the internal organs for measurement. The dressed carcasses as well as the organ weights were expressed as a percentage of body weight.

Table 1 - Percentage composition of experimental diets

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Control</th>
<th>AA</th>
<th>PP</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Corn meal</td>
<td>40.00</td>
<td>40.00</td>
<td>40.00</td>
<td>40.00</td>
</tr>
<tr>
<td>GNC</td>
<td>14.50</td>
<td>8.00</td>
<td>3.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PKC</td>
<td>27.0</td>
<td>23.50</td>
<td>18.50</td>
<td>11.50</td>
</tr>
<tr>
<td>Fish meal</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Cassava peel / Blood Meal</td>
<td>0.00</td>
<td>10.00</td>
<td>20.00</td>
<td>30.00</td>
</tr>
<tr>
<td>Molasses</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>Salt</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Bone meal</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>Premix<sup>1</sup></td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

¹Premix composition; content per 1kg diet: Vitamin A 3,200,000iu; Vitamin D₃ 1,200iu; Vitamin E 3,200iu; Vitamin K₃ 800mg; Vitamin B₁ 400mg; Vitamin B₂ 2000mg; Vitamin B₆ 2000mg; Vitamin B₁₂ 2000mg; Niacin 400mg; Selenium (Se) 40mg; manganese (Mn) 320mg; Pantothentic acid 2000mg; Folic acid 200mg; Chlorine (Cl) 60,000mg; Iron (Fe) 8.000mg; Copper (Cu) 3,200mg; Zinc (zn) 2,000mg; Cobalt (Co) 90mg; Iodine (I).

128
Laboratory Analysis
The experimental diets, tests ingredients as well as the faecal samples were analyzed for proximate composition by the methods of AOAC (2005).

Statistical Analysis
The data collected were subjected to Analysis of variance using General Linear Model procedure (GLM) of SAS (2000) and means were compared using Duncan multiple Range Test option of the same statistical package.

RESULTS AND DISCUSSION

The proximate composition of the experimental diets revealed that the protein content ranged between 16.74-18.16% while the calculated metabolizable energy ranged between 2342.25-2454.02 kcal/kg (Table 2). The crude protein values are similar to that of Okeke et al. (2009) but lower than that of Alu et al. (2009). However the values fall within the range recommended by Lebas (1979) and NRC (1984) for growing rabbits. Nutrient digestibility as influenced by the pre-treatments methods is presented in Table 3. This shows that the pre-treatment methods did not have any significant (P>0.05) effect on dry matter digestibility, crude fat digestibility, and ash digestibility. However crude protein, crude fibre and Nitrogen free extract digestibilities were significantly (P<0.05) affected by dietary treatments.

Table 2 - Proximate composition of the Experimental diets

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>CC</th>
<th>AA</th>
<th>PP</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>DM (%)</td>
<td>89.09</td>
<td>89.58</td>
<td>89.01</td>
<td>89.04</td>
</tr>
<tr>
<td>CP (%)</td>
<td>18.27</td>
<td>16.74</td>
<td>16.92</td>
<td>18.16</td>
</tr>
<tr>
<td>CFAT (%)</td>
<td>4.13</td>
<td>3.69</td>
<td>3.73</td>
<td>3.78</td>
</tr>
<tr>
<td>ASH (%)</td>
<td>7.32</td>
<td>6.82</td>
<td>6.94</td>
<td>7.13</td>
</tr>
<tr>
<td>CF (%)</td>
<td>8.87</td>
<td>7.87</td>
<td>8.14</td>
<td>8.04</td>
</tr>
<tr>
<td>NFE (%)</td>
<td>68.73</td>
<td>71.7</td>
<td>71.21</td>
<td>70.02</td>
</tr>
</tbody>
</table>

ENERGY (kcal/kg) 2454.02 2342.25 2437.46 2441.97 2342.25 2437.46 2441.17 2442.25 2437.25 2441.97

Table 3 - Main effect of pre-treatment method on performance of rabbit does fed diet containing treated cassava peel/blood meal mixtures

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>ATD/BM</th>
<th>PAB/BM</th>
<th>SUD/BM</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial weight</td>
<td>609.90</td>
<td>610.70</td>
<td>610.70</td>
<td>612.70</td>
<td>139.00</td>
</tr>
<tr>
<td>Final weight</td>
<td>1363.39</td>
<td>1277.5</td>
<td>1314.4</td>
<td>1323.3</td>
<td>269.00</td>
</tr>
</tbody>
</table>

Digestibility
- Dry Matter Digestibility (%): 61.17, 63.4, 54.75, 57.47, 15.05
- Crude Protein Digestibility (%): 57.23, 61.96, 52.39, 52.16, 16.12
- Crude Fibre Digestibility (%): 32.97, 38.91, 41.91, 41.65, 6.05
- Crude Fat Digestibility (%): 84.83, 85.42, 83.18, 83.91, 15.88
- Crude Ash Digestibility (%): 72.83, 70.54, 64.41, 63.38, 12.39
- Nitrogen Free Extract Digestibility (%): 83.83, 77.88, 72.77, 75.15, 10.49

The values obtained in crude protein digestibility of the rabbits that were fed cassava peel blood meal mixtures were comparable with the control irrespective of the processing method employed for cassava peel. A slight higher but insignificant value was observed for ash treated cassava peel when compared with the control. This may be due to the partial digestion of cellulose and enzyme secreted by microbes during the 24 hours soaking in ash thus making it easy for digestion by the rabbits. This observation is similar to the report of Adejinmi et al. (2007). Digestibility of crude fibre was higher (P<0.05) in the rabbits that received treated cassava peel compared with control. However, digestibility of Nitrogen free extract was significantly (P<0.05) lower in the rabbits that were fed treated cassava peel. This may be attributed to the fact that various processing applied enhanced the nutrient utilization.

The main effect of levels of inclusion of cassava peel/blood meal mixtures is presented in Table 4. The final live weights, and digestibility of dry matter, crude protein, crude fibre and ash were not significantly (P>0.05) affected by levels of inclusion of cassava peel+blood meal mixture in the diets. However digestibility coefficients of crude fat and nitrogen free extract were affected (P<0.05). The 30% inclusion levels had significantly (P<0.05) depressing effect on fat digestibility. Although the values obtained for crude fibre digestibility were not significantly (P<0.05) affected across the treatments the trend shows that it decrease linearly as the level of inclusion increases. This may mean that as the level of inclusion of cassava peel/blood meal increased there is the possibility of...
increase fibre and cyanide which is an anti-nutritional factor. According to Merck (1988), most toxicant including methylxanthine interfere with enzyme system by denaturing enzyme protein and binding to the enzyme molecule thus inhibiting the digestive potential of animals. Cheeke (1987), had earlier reported that fibre is poorly digested in rabbit as this is rapidly propelled through the colon and excreted as hard feaces. This observation is confirmed in this study because across the treatments crude fibre digestibility is comparatively lower than other nutrients. However, the performance in terms of final Live weight were not significantly (P>0.05) affected in spite of the variations in the digestibility coefficients.

The main effects of pre-treatment methods on organ characteristics of rabbit does is presented in Table 5. Final live weight, eviscerated weight, dressing percentage, heart weight, lung weight, spleen weight, kidney weight and liver weight of the rabbits in this experiment were not affected (P>0.05) by the pre-treatment method of cassava peel/blood meal.

<table>
<thead>
<tr>
<th>Table 4 - Main effect of level of inclusion of treated cassava peel/blood meal mixtures on performance of rabbit does</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td>Initial weight</td>
</tr>
<tr>
<td>Final weight</td>
</tr>
<tr>
<td>Digestibility</td>
</tr>
<tr>
<td>Dry Matter Digestibility (%)</td>
</tr>
<tr>
<td>Crude Protein Digestibility (%)</td>
</tr>
<tr>
<td>Crude Fibre Digestibility (%)</td>
</tr>
<tr>
<td>Crude Fat Digestibility (%)</td>
</tr>
<tr>
<td>Crude Ash Digestibility (%)</td>
</tr>
<tr>
<td>Nitrogen Free Extract Digestibility (%)</td>
</tr>
</tbody>
</table>

* Means along the same row with different superscripts are significantly different (P<0.05); SEM= Standard error of Mean.

<table>
<thead>
<tr>
<th>Table 5 - effect of pre-treatment method on organ characteristics of rabbits does fed diet containing cassava peel/blood meal mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Final live weight (g)</td>
</tr>
<tr>
<td>Eviscerated weight (g)</td>
</tr>
<tr>
<td>Dressing Percentage (%)</td>
</tr>
<tr>
<td>Heart weight (g)</td>
</tr>
<tr>
<td>Lung weight (g)</td>
</tr>
<tr>
<td>Spleen weight (g)</td>
</tr>
<tr>
<td>Kidney weight (g)</td>
</tr>
<tr>
<td>Liver weight (g)</td>
</tr>
</tbody>
</table>

CC = Control diet (0% cassava peel/ blood meal), AA = Ash treated cassava peel meal, PP = Parboiled cassava peel meal, SS = Sundried cassava peel meal.

This may be indication of the effectiveness of the methods used in treating cassava peels in this study. The main effects of levels of inclusion are presented in Table 6. The inclusion levels of cassava peel+blood meal mixture did not affect (P>0.05) the final body, eviscerated weights, the dressing percentage, the relative heart, lungs, and liver weights. The relative spleen weights of rabbits in treatments 1(0%), and 2(10%) are similar (P>0.05) but lower (P<0.05) than the value reported by Dairo et al. (2002) but lower than the value reported by Dairo and Sonaiya (1981). This may be due to difference in the content of the feeds and management practices. The spleen is one of the reticulo-endothelial organs which function to destroy worn out red corpuscles releasing the iron from the haemoglobin for re-use by the body and also forming pigments which are then collected by the liver. According to Frandson (1981), many lymphocytes and monocytes are formed in the spleen, and it is probably associated with anti-body production. The results also shows that rabbit on the 30% inclusion had
the highest value (9.40g) for relative kidney weights when compared with the control (7.40), 10% (7.67g), and 20% (7.87g). These values are lower than the values reported by Ijaiya (2002). This may be due to difference in feed composition (Agunbiade et al., 1999). Kidney enlargement has been attributed to high deposition of uric acid related compounds (Opstevdt, 1988; Idowu and Eruvbetine, 2005). The swelling and enlargement of these vital organs may be due to toxic degenerative factors (Synder, 1990; Mitchell and Cotran, 2003). The incriminating factor in this study could be the residual HCN in the diet.

CONCLUSION

The study seems to suggest that rabbit does can tolerate up to 30% cassava peel+blood meal mixture without any adverse effect on body weight. When viewed in terms of nutrient utilization it can also be concluded the ash treatment of cassava peel is more effective than parboiling and sun drying before preparing the cassava peel+blood meal mixture. The test ingredients are easy to acquire and are of low value in human nutrition, consequently their inclusion in rabbit diets will lead to increase rabbit production, higher inclusion level as well as fortification with growth promoters will be focus of further studies.

REFERENCES

Ojebiyo OO, Farinu GO, Babatunde GM, Aderinola OA (2008). Evaluation of the nutritive potential of cassava (Manihot esculenta Crantz) peels-blood meal mixture on the performance characteristics of female growing rabbits in the derived Savannah zone of Nigeria. Proc. 9th World Rabbit Congress, June 10-13 Verona Italy.

Wadha M, Bakshi MPS (2013). Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products. APHCA/FAO Publication 2013/04, Rome, Italy.
PREVALENCE OF Salmonella SPECIES IN STRAY CATS IN MOSUL CITY, IRAQ

M. MUSHGIL ZENAD¹, Q. TALIB AL-OBAIDI² AND M. ABDUL-MOHSEN AL-TALIBI²

¹PhD, Assistant Prof.; Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Baghdad, Iraq
²MSc, Lecturers; Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Mosul, Iraq

*Email: Zenadabood@yahoo.com

ABSTRACT: Stray carnivores are often exposed to intestinal infection with Salmonella species and might remain carriers for long period, so they have great possibilities for shedding these organisms; particularly the stray cats in cities are more than others because of their size and habits; thus they might contribute actively in contamination of environment. The aim of this study was to detect Salmonella species in stray cats and to access their role in spreading of salmonella infection. Rectal swabs from 59 apparently healthy cats were cultured, tetrathionate broth and Salmonella–Shigella agar were used. Euthanization and post mortem examinations were done later. Bacterial isolation from internal organs was carried out also. Morphological properties and biochemical tests were dependent for detection of Salmonella organisms. They were serotyped in Central Health Laboratory in Baghdad. A high isolation rate of Salmonellae (10.16%) was recorded (by rectal swabs). Various Salmonella serovars were observed: S. anatum (3.38%), S. montevideo (3.38%), S. typhimurium (1.69%) and S. brennderup (1.69%). The isolation rate from internal organs was lower (0.67%) than that from rectum, S. typhimurium (1.69%) and S. montevideo (1.69%) were isolated from small intestine and mesenteric lymph nodes respectively. Stray cats have great chances to get intestinal infection in comparison with the house cats due to their living style. In conclusion asymptomatic (carriers) stray cats were considered a dangerous source of infection with Salmonellae, besides their significant role in contamination of environment; they will threat public and animal health particularly in cities.

Keywords: Salmonella, Cats, Enteric Infection in Mosul.

INTRODUCTION

Salmonellosis is a worldwide spread infection, it causes considerable economic losses and it is of public health significance (Hoelzer et al., 2011). Salmonella species mostly inhibits the intestinal tract of vertebrate and invertebrate, consequently they are excreted in feces and resulting in contamination of food, water and environment (Hale et al., 2012). Despite the disappearance of clinical signs the infected cats remain carriers for long period; particularly those recovered from acute infection continue to shed salmonellae in their feces for 12 week (Wall et al., 1995). Moreover excretion of the organisms may be increased with stress factors and prolong uses of antibiotics (Shane et al., 2003 and Mather et al., 2013). Cats can carry Salmonella organisms asymptomatically and the clinical form is uncommon (Gallaway, 2008). Stray cats feed on diet of animal sources: rodents, wild birds, carcasses and west products of slaughters which will in turn increase the infection rate in cats and other species of animals. Salmonellosis had been extensively investigated in the different parts of the world: Infection rate of salmonellosis in apparently healthy cats (160) in Iran was 9.4% and in pet cats 18.4% (Shimi and Barin, 1977), in Sudan 10.5% (Khan, 1970), in the same instance very few studies on stray carnivores were performed in Iraq; high rate of Salmonella infection was reported in stray dogs in Mosul governorate- Iraq (Zenad and Ali, 2003), also it was reported a higher infection rate in diseased than healthy cats (Shimi and Barin, 1977). This was a preliminary study on cats in Mosul city. The aim of the present work is to find the prevalence of Salmonella species in stray cats and to access their role in spreading of disease in Mosul city.

MATERIAL AND METHODS

Fifty nine stray cats had been captured by using suitable cages, they were apparently healthy. Rectal swabs were taken for culturing, all these cats were humanly euthanized and post mortem examination was carried out.
Specimens (one gram) from internal organs: mesenteric lymph node, spleen, liver, brain and one milliliter of small intestinal content were collected; tissue organs were aseptically cut into small pieces. All tissue specimens and rectal swabs were inoculated into 10 ml buffer pepton water and incubated at 37°C for 24 hours, one ml of the later transferred into 10 ml of enrichment tetrathionate broth and incubated at 42°C for 48 hours, one loop full from the later broth was streaked on selective Salmonella-Shigella agar and incubated at 37°C for 24 hours. The characteristic appearance of Salmonella colonies was dependent for identification and selection of them for further biochemical tests: triple sugar iron, Simmon citrate and urea agar test. Accordingly those give positive reaction in triple sugar iron test and Simmon’s citrate as well as negative reaction to urease, were selected for serotyping in Central Health Laboratory in Baghdad-Iraq (OIE, 2003). This work was done by approval of veterinary medicine college council and diroctorate of veterinary hospital in Mosul city.

RESULTS

Eight out of 59 apparently healthy cats were positive for Salmonella species isolation, the total isolation rate was 13.5% (Figure 1). Four different serovars (by rectal swabs) were isolated (10.16%) from six cats; they were: Salmonella anatum (3.38%), Salmonella montevideo (3.38%), Salmonella typhimurium (1.69%) and Salmonella brenderup (1.69%; Table 1). Two other serotypes were isolated from internal organs of two cats (negative to rectal swab isolation): Salmonella typhimurium (1.69%) from small intestinal content and Salmonella montevideo (1.69%) from mesenteric lymph nodes. The isolation rate from internal organs of necropsized cats was lesser than that from rectal swabs. The most frequent serotype was Salmonella montevideo (37.5%), Salmonella anatum and Salmonella typhimurium (25% for each) and Salmonella brenderup (12.5%; Figure 1). Insignificant variation among both sexes was observed.

Table 1 - Salmonella serovars isolated from different samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>No. of samples</th>
<th>No. of (+ve) samples for Salmonella sp.</th>
<th>(%) of different salmonella serovars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecal swabs</td>
<td>59</td>
<td>2</td>
<td>S. anatum (3.38)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>S. montevideo (3.38)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>S. typhimurium (1.69)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Salmonella brenderup (1.69)</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>6</td>
<td>10.16</td>
</tr>
<tr>
<td>Internal organs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesenteric L.N</td>
<td>59</td>
<td>1</td>
<td>S. montevideo (1.69)</td>
</tr>
<tr>
<td>Spleen</td>
<td>59</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Liver</td>
<td>59</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Brain</td>
<td>59</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Small intestinal contents</td>
<td>59</td>
<td>1</td>
<td>S. typhimurium (1.69)</td>
</tr>
<tr>
<td>Total</td>
<td>295</td>
<td>2</td>
<td>0.67</td>
</tr>
</tbody>
</table>

(*+ve*) = positive samples of feces and tissues of organs examined for salmonella species

![Figure 1 - Frequent rate of different salmonella serovars](image-url)
DISCUSSION

Salmonellosis had been investigated in different animal species in Mosul city (Al-Nakshabandy and Zenad, 2004 and Saleem, 2003), as well as in human being (Al-Juboori et al., under publication). Seldom studies on stray carnivores had been done in Iraq. Salmonella infection rate was higher in stray dogs (15%) than other species (Zenad and Ali, 2003) in Mosul, in the same instance, low rate of Salmonella infection (4.6%) was recorded in housed dogs in Baghdad-capital city- of Iraq (Kallo and Hasso, 2001). The variations of Salmonella infection in dogs were recorded in many different countries (Nastasi et al., 1986; Kwaga et al., 1989 and Kozak et al., 2003). These variations could be attributed to differences in geography, time of studies, environments etc., and /or other factors (Ojo and Adetosoye, 2009). A total rate of Salmonella infection in stray cats was 13.5%, it was near to that value reported in stray dogs (15%) in Mosul (Zenad and Ali, 2003). Also it was similar to the prevalence of salmonellosis in cats in Iran (13.6%) reported by Shimi and Barin (1977). The isolation rate by rectal swabs (10.16%) was higher than that from internal organs (0.67%), this result increased the probability of shedding Salmonellae in feces of infected cats, furthermore the rate of Salmonella infection in apparently healthy pet cats was 12.8% in Iran (Shimi et al., 1977) also Fox and Beaucage (1979) reported an isolation rate 10.6% in cats from different sources. Moreover a surprising high rate of Salmonella infection (51.4%) in housed cats was reported (Immerseel et al., 2004). In contrary lower infection rate (1.92%) in healthy cats was reported in German (Weber et al., 1995). Similarly 1% of Salmonella infection rate was recorded in Colorado (Hill et al., 2000). Low rate of salmonella infection (0.36%, 0.8%) in healthy cats were also recorded in Belgium and New York (Immerseel et al., 2004 and Spain et al., 2001), however a wide range of isolation rate of salmonellae from clinically normal cats (0-14 %) was reported (Center et al., 1995). The variations of salmonella infection rates in cats in different localities are seemed to be resembled to those in dogs and might be due to the same factors. Despite asymptomatic infection of cats with Salmonella species they become carriers and can shed Salmonella organisms (Carter and Quinn, 2000) in their feces. Some researchers considered the apparently healthy cats have low risk on public health (Wilson, 2004). As the Salmonella organisms commonly inhibit the digestive tract and their associated lymph nodes of infected cats, they excrete Salmonella organisms intermittently in their feces (Gallaway et al., 2008 and Carter and Quinn, 2000). In spite of infected cats being asymptomatic they can perpetuate the Salmonella species in their bodies, besides an increase dissemination of Salmonellae occurs when they are exposed to stress factors or concurrent diseases (Bhaiyat et al., 2009) and prolong uses of antimicrobial drugs (Mather et al., 2013), therefore carriers will actively contribute to contamination of environment. Moreover stray cats scavenge or hunt: carcasses, west products of slaughter houses, rodents and wild birds, which in turn increase the rate of infection in such species. Also the uncontrolled wandering of stray cats helps in spreading of Salmonellae over a wide size area in cities. Moreover the small size and quiet behavior of cats as compared to other carnivores; besides the merciful looking to them by people are greatly facilitated the spread of these organisms. This study revealed that Salmonella montevideo was the dominant serovar (37.5%) followed by Salmonella anatum and Salmonella typhimurium (25% for each Figure 1). In other studies the most frequent serovar was Salmonella typhimurium (Weber et al., 1995 and Philbey et al., 2008), this could be due to differences in geographical areas, time and species (Jay et al., 2003 and Tewari et al., 2012).

CONCLUSION

Asymptomatic (carriers) stray cats were considered a dangerous source of infection with Salmonellae, besides their significant role in contamination of environment; they will threat public and animal health particularly in cities. Conclusively the stray cats are potentially posing a significant threat to public health, therefore stray carnivors in large towns must be taken in consideration when prevention, control or irradication programs of salmonellosis carried out. Condamation of stray cats and dogs is ethically unaccepted now. The campaigns of hunting and surgical castration of males in veterinary hospitals are more humane procedures, beside education and awareness of people were necessary for cooperation.

REFERENCES

Al-Juboori YH Zenad MM and Hassen RH (under publication). Prevalence of salmonella serotypes in diarrheic and non diarrheic patients in Mosul-Iraq.

Manuscripts as Original Research Paper, Short Communication, Case Report and Review or Mini-Reviews are invited for rapid peer-review publishing in Online Journal of Animal and Feed Research (OJAFR).

Papers can be in any relevant fields of Animal Sciences (Animal Nutrition, Physiology, Reproduction, Genetics and Breeding, Behavior, Health, Husbandry and its economic, Animal products and Veterinary medicines of domestic animals) and relative topics. The journal does encourage papers with emphasis on the nutritive value and utilization of feeds that is depended to methods of Improvement, Assessment, Conserving and Processing feeds, Agronomic and climatic factors, Metabolic, Production, Reproduction and Health responses to dietary inputs (e.g., Feeds, Feed Additives, Specific Feed Components, Mycotoxins). Also, Mathematical models relating directly to animal-feed interactions, Analytical and experimental methods for Feed Evaluation as well as Animal Production studies with a focus on Animal Nutrition that do have link to a feed (Food Science and Technology) are acceptable relative topics for OJAFR.

All manuscripts must be submitted in English and will be evaluated in a totally confidential and impartial way. Submission of a manuscript to the OJAFR implies that:

1. Submitted work has not been previously published and is not being submitted for publication elsewhere;
2. All authors have approved the submission and have obtained permission for publish work.
3. Researchers have proper regard for conservation and animal welfare considerations. Attention is drawn to the 'Guidelines for the Treatment of Animals in Research and Teaching'. Any possible adverse consequences of the work for populations or individual organisms must be weighed against the possible gains in knowledge and its practical applications.

The manuscript and other correspondence should be sent preferentially online by OJAFR Manuscript Submission Portal or by e-mails: editors@ojafr.ir or editorojafr@gmail.com.

PRESENTATION OF THE ARTICLE

Main Format:
First page of the manuscripts must be properly identified by the title and the name(s) of the author(s). It should be typed in Times New Roman (font sizes: 17pt in capitalization for the title, 10pt for the section headings in the body of the text and the main text, double spaced, in A4 format with 2cm margins. All pages and lines of the main text should be numbered consecutively throughout the manuscript. The manuscript must be saved in a .doc format, (not .docx files). Abbreviations in the article title are not allowed.

Manuscripts should be arranged in the following order:

a. TITLE (brief, attractive and targeted);
b. Name(s) and Affiliation(s) of author(s) (including post code) and corresponding E-mail;
c. ABSTRACT;
d. Key words (separate by semicolons; or comma,);
e. Abbreviations (used in the manuscript);
f. INTRODUCTION;
g. MATERIALS AND METHODS;
h. RESULTS;
i. DISCUSSION;
j. CONCLUSION;
k. Acknowledgements (if there are any);
l. REFERENCES;
m. Tables;
n. Figure captions;
o. Figures;

Results and Discussion can be presented jointly if preferred.

Discussion and Conclusion can be presented jointly if preferred.

Article Sections Format:
Title should be a brief phrase describing the contents of the paper. The Title Page should include the author(s)'s full names and affiliations, the name of the corresponding author along with phone and e-mail information. Present address (es) of author(s) should appear as a footnote. Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The abstract should be 150 to 300 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.
Materials and Methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer's name and address. Subheadings should be used. Methods in general use need not be described in detail.

Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the author(s)' experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculations and detailed interpretation of data should not be included in the results but should be put into the discussion section.

Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

Conclusion can be presented jointly if preferred.

Acknowledgments of persons, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph forms or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or PowerPoint before pasting in the Microsoft Word manuscript file. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References:

1. All references to publications made in the text should be presented in a list with their full bibliographical description.
2. In the text, a reference identified by means of an author's name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author's surname should be mentioned, followed by 'et al.' In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like 'a' and 'b' after the date to distinguish the works.
3. References in the text should be arranged chronologically (e.g. Kelebeni, 1983; Usman and Smith, 1992 and Agindotan et al., 2003). The list of references should be arranged alphabetically on author's surnames, and chronologically per author. If an author's name in the list is also mentioned with co-authors, the following order should be used: Publications of the single author, arranged according to publication dates - publications of the same author with one co-author - publications of the author with more than one co-author. Publications by the same author(s) in the same year should be listed as 1992a, 1992b, etc.
4. Names of authors and title of journals, published in non-latin alphabets should be transliterated in English.
5. A sample of standard reference is "1th Author surname A, 2th Author surname B, 3th Author surname C. 2013. Article title of Volume (Add No. of Issue): 00-00.
6. Both full or abbreviated journal title types are acceptable in references.

- **Examples (at the text):**

- **Examples (at References section):**
 a) For journal:
 b) For symposia reports and abstracts:
 c) For edited symposia, special issues, etc., published in a journal:
 d) For books:
 e) Books, containing sections written by different authors:

In referring to a personal communication the two words are followed by the year, e.g. (Brown, J. M., personal communication, 1982). In this case initials are given in the text.

Formulae, numbers and symbols

1. Typewritten formulae are preferred. Subscripts and superscripts are important. Check disparities between zero (0) and the letter O, and between one (1) and the letter I.
2. Describe all symbols immediately after the equation in which they are first used.
3. For simple fractions, use the solidus (/), e.g. 10 /38.
4. Equations should be presented into parentheses on the right-hand side, in tandem.
5. Levels of statistical significance which can be used without further explanations are *P < 0.05, **P < 0.01, and ***P<0.001.
6. In the English articles, a decimal point should be used instead of a decimal comma.
7. In chemical formulae, valence of ions should be given, e.g. Ca2+ and CO32-, not as Ca++ or CO3.
8. Numbers up to 10 should be written in the text by words. Numbers above 1000 are recommended to be given as 10 powered x.
9. Greek letters should be explained in the margins with their names as follows: Αα - alpha, Ββ - beta, Γγ - gamma, Δδ - delta, Εε - epsilon, Ζζ - zeta, Ηη - eta, Θθ - theta, Ιι - iota, Κκ - kappa, Λλ - lambda, Μμ - mu, Νν - nu, Ξξ - xi, Οο - omega, Ππ - pi, Ρρ - rho, Σσ - sigma, Ττ - tau, Υυ - upsilon, Φφ - phi, Χχ - chi, Ψψ - psi, Ωω - omega.

Article Review Process and Proof
Firstly, all manuscripts will be checked by DocCheck, a plagiarism finding tool. An double blind reviewing model is used by OJAFR for non-plagiarized papers. The manuscript is reviewed and edited by two reviewers selected by section editor (SE) or deputy SE of OJAFR, who are research workers specializing in the relevant field of study. Also, a reviewer result form is filled by reviewer to guide authors. One unfavourable review means that the paper will not be published. After review and editing the article, a final formatted proof is sent to the corresponding author once again to apply all suggested corrections during the article process. The editor who received the final revisions from the corresponding authors shall not be hold responsible for any mistakes shown in the final publication.

Declaration
After manuscript accepted for publication, a declaration form will be sent to the corresponding author who that is responsible to coauthors’ agreements to publication of submitted work in OJAFR after any amendments arising from the peer review.

Paper Submission Flow:

Charges to Authors
No peer-reviewing charges are required for manuscripts submitted to the OJAFR. But, there is a $75 fee for the processing of each primary accepted paper after an extensive review via DocCheck. Papers cannot move forward in the editing process until the submission fee has been received. Authors are able to pay the processing fee during the submission process using a credit card. Payment can also be made by PayPal or MoneyGram. Bank to bank transfers are accepted. The submission fee will be waived for invited authors, authors of hot papers, and corresponding authors who are editorial board members of the Online Journal of Animal and Feed Research (OJAFR). The Journal will consider requests to waive the fee for cases of financial hardship (for high quality manuscripts and upon acceptance for publication). Requests for waiver of the submission fee must be submitted via individual cover letter by the corresponding author and cosigned by an appropriate institutional official to verify that no institutional or grant funds are available for the payment of the fee. Letters including the manuscript title and manuscript ID number should be sent to: editors@ojafr.ir or administrator@science-line.com. It is expected that waiver requests will be processed and authors will be notified within one business day.

Submission Preparation Checklist
Authors are required to check off their submission’s compliance with all of the following items, and submissions may be returned to authors that do not adhere to the following guidelines.
The submission has not been previously published, nor is it before another journal for consideration (or an explanation has been provided in Comments to the Editor).

The submission file is in Microsoft Word, RTF, or PDF document file format.

Where available, URLs for the references have been provided.

The text is single-spaced; uses a 12-point font; and all illustrations, figures, and tables are placed within the text at the appropriate points, rather than at the end.

The text adheres to the stylistic and bibliographic requirements outlined in the Author Guidelines.

Copyright Notice
Scienceline Press apply the Creative Commons Attribution NonCommercial 3.0 License (CC BY-NC 3.0) to all manuscripts to be published.

An Open Access Publication is one that meets the following two conditions:
1. The author(s) and copyright holder(s) grant(s) to all users a free, irrevocable, worldwide, perpetual right of access to, and a license to copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship, as well as the right to make small numbers of printed copies for their personal use.
2. A complete version of the work and all supplemental materials, including a copy of the permission as stated above, in a suitable standard electronic format is deposited immediately upon initial publication in at least one online repository that is supported by an academic institution, scholarly society, government agency, or other well-established organization that seeks to enable open access, unrestricted distribution, interoperability, and long-term archiving.

Authors who publish with this journal agree to the following terms: 1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. 2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. 3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.

Privacy Statement
Privacy is an important concern for users of Scienceline journals. Below you will find our policy for protecting users' personal information. Registration on our website is optional and voluntary. Browsing and viewing articles on our website does not require any personal information to be submitted from users. Nor do these functions require the user's browser to be set to accept cookies. Some other aspects of our services published on our website do require the use of cookies, and the supply of information such as name, e-mail etc. This is necessary for security reasons and also for us to be able to assure standards of scientific integrity. Users may submit further personal information (e.g. details of research areas of interest) in order to take advantage of present and future personalization facilities on our website. Registrants may decline to provide the information requested. They should be advised, however, that Scienceline Press may be unable to deliver its services unless at least the information necessary for security and identification purposes is provided. In order to offer the best possible service to users, Scienceline Press tracks the patterns of usage of pages on the site. This enables us to identify the most popular articles and services. Where users have provided details of their research areas of interest, this information can be correlated, helping Scienceline Press to provide a useful service for scientists, offering them the most relevant information based on their areas of interest. User information will only be shared with third parties with the explicit consent of the user. Publishing a scientific manuscript is inherently a public (as opposed to anonymous) process. The name of all authors and e-mail address of corresponding authors of a manuscript will be available to users. These details are made available in this way purely to facilitate scientific communication. Collecting these e-mail addresses for commercial use is not allowed, nor will Scienceline Press itself send unsolicited e-mail to authors, unless it directly concerns the paper they have published on Scienceline Press journals. Scienceline Press reserves the right to disclose members' personal information if required to do so by law, or in the good faith and belief that such action is reasonably necessary to comply with legal process, respond to claims, or protect the rights, property or safety of Scienceline Press, employees or members.
Welcome to Science-Line Publication
The Science-line is a reporter of knowledge and research, is being run by a team of professionals from all corners of the world, and takes aims to help scientists and researchers across the glob. The Recent Original Research Paper, Review, Short Communication and important Case Reports are invited for rapid peer-review publishing in the journals listed below:

Online Journal of Animal and Feed Research (OJAFR)
ISSN 2228-7701; Bi-monthly editors@ojaf.r.ir Online Submission

Journal of Civil Engineering and Urbanism (JCEU)
ISSN 2252-0430; Bi-monthly ojceu@ojceu.ir Online Submission

Journal of World’s Poultry Research (JWPR)
ISSN: 2322-455X; Quarterly editor@jwpr.science-line.com Online Submission

Journal of Life Sciences and Biomedicine (JLSB)
ISSN: 2251-9939; Bi-monthly editors@jlsb.science-line.com Online Submission

World’s Veterinary Journal (WVJ)
ISSN: 2322-4568; Quarterly editor@wjv.science-line.com Online Submission

International Journal of Applied Linguistic Studies (IJALS)
ISSN: 2322-5122; Quarterly info.ijals@science-line.com Online Submission

Journal of Educational and Management Studies (JEMS)
ISSN: 2322-4770; Quarterly info@jems.science-line.com Online Submission

Journal of Art and Architecture Studies (JAAS)
ISSN: 2383-1553; Irregular editor@jaas.science-line.com Online Submission

Asian Journal of Medical and Pharmaceutical Researches (AJMPR)
ISSN: 2322-4789; Quarterly editor@ajmpr.science-line.com Online Submission

Journal of World’s Electrical Engineering and Technology (JWEEET)
ISSN: 2322-5114; Irregular editor@jweet.science-line.com Online Submission

Scientific Journal of Mechanical and Industrial Engineering (SJMIE)
ISSN: 2383-0980; Bi-monthly editors@sjmie.science-line.com Online Submission

Journal of Applied Business and Finance Researches (JABFR)
ISSN: 2382-9907; Bi-monthly jabfr@science-line.com Online Submission

Asian Journal of Social and Economic Sciences (AJSES)
ISSN: 2393-0948; Quarterly ajses@science-line.com Online Submission

Karun International Journal of Clinical Medicine (KIJCM)
ISSN: xxxx-xxxx ; Irregular kijcm@science-line.com; Coming soon

Journal of Human and Nature Sciences (JHNS)
ISSN: xxxx-xxxx ; Bi-monthly jhns@science-line.com; Coming soon

Copyright © 2014. All Rights Reserved.
Sciencline Publishing Corporation
Tel: +98 914 420 7713 (Iran); +90 538 770 8824 (Turkey)